您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 海口市2016届九年级上第二次月考数学试卷含答案解析
第1页(共17页)2015-2016学年海南省海口市九年级(上)第二次月考数学试卷一、选择题(每小题3分,共42分)1.计算()2的结果是()A.3B.9C.±3D.±92.若成立,那么a的取值范围是()A.a≤0B.a≥0C.a<0D.a>03.下列计算中,正确的是()A.B.C.D.4.方程x2=42的解是()A.x1=x2=4B.x1=x2=16C.x1=﹣2,x2=2D.x1=﹣4,x2=45.下列各组长度的线段,成比例线段的是()A.1cm,cm,cm,cmB.3cm,4cm,5cm,6cmC.2cm,4cm,6cm,8cmD.10cm,5cm,6cm,4cm6.将一元二次方程x2﹣2x﹣5=0化成(x+a)2=b的形式,则b等于()A.1B.5C.6D.97.下列事件是必然发生的是()A.明天是星期一B.十五的月亮象细钩C.早上太阳从东方升起D.上街遇上朋友248.下列说法:①所有的等腰直角三角形都相似;②所有的矩形都相似;③所有的菱形都相似;④所有的正方形都相似;⑤所有的正六边形都相似.其中,正确命题的个数为()wA.1B.2C.3D.4t9.如图,在△ABC中,∠C=90°,sinB=,则cosB等于()hA.B.C.D.Y10.掷两枚普通硬币一次,落地后出现两个正面都朝上的概率是()6A.B.C.D.O11.如图,△ADB与△AEC相似,AB=3,DB=2,EC=6,则BC等于()5第2页(共17页)A.9B.6C.5D.4I12.如图,把一个长方形划分成三个全等的小长方形,若要使每一个小长方形与原长方形相似,则原长方形长和宽之比为()aA.3:1B.:1C.2:1D.:1h13.如图,修建抽水站时,沿着坡度为i=1:的斜坡铺设水管,若测得水管A处铅垂高度为6m,则所铺设水管AC的长度为()PA.8mB.10mC.12mD.18m614.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()yA.B.C.D.6二、填空题(每小题4分,共16分)815.计算:=.Z16.化简:=.k17.如图,AD垂直平分BC,DE∥AB,若AB=5,则DE的长为.418.如图,在正方形网格上画有梯形ABCD,则∠BDC的度数为.0三、解答题(共62分)A19.计算f第3页(共17页)(1)(2).20.解方程与化简A(1)解方程:3x2+x﹣1=0(用公式法)=(2)cos30°﹣3tan60°+2.=21.一个不透明的口袋中有三个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同.甲先从袋中随机取出1个小球,记下数字后放回;乙再从袋中随机取出1个小球记下数字.(1)用画树形图或列表的方法,求取出的两个小球上的数字之和为3的概率;(2)求取出的两个小球的数字之和大于4的概率.22.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.23.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,﹣2).(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1,使它与△OAB的相似比为2:1,并写出点A的对应点A1的坐标;(2)画出将△OAB向左平移2个单位,再向上平移1个单位后的△O2A2B2,并写出点A2的坐标;(3)判断△OA1B1与△O2A2B2,能否是关于某一点M为位似中心的位似图形?若是,请在图中标出位似中心M,并写出点M的坐标.第4页(共17页)24.已知:如图所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm.两个动点P、Q分别从B、C两点同时出发,其中点P以1厘米/秒的速度沿着线段BC向点C运动,点Q以2厘米/秒的速度沿着线段CA向点A运动.(1)P、Q两点在运动过程中,经过几秒后,△PCQ的面积等于4厘米2?经过几秒后PQ的长度等于5厘米?(2)在P、Q两点在运动过程中,四边形ABPQ的面积能否等于11厘米2?试说明理由.(3)经过几秒时以C、P、Q为顶点的三角形与△ABC相似?第5页(共17页)2015-2016学年海南省海口市九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.计算()2的结果是()A.3B.9C.±3D.±9【考点】二次根式的乘除法.【分析】直接利用二次根式乘法运算法则求出即可.【解答】解:()2=9.故选:B.2.若成立,那么a的取值范围是()12283577A.a≤0B.a≥0C.a<0D.a>0【考点】二次根式的性质与化简.【分析】根据二次根式的性质得到=|a|,则|a|=﹣a,然后根据绝对值的意义确定a的范围.【解答】解:∵,而=|a|,∴|a|=﹣a,∴a≤0.故选A.3.下列计算中,正确的是()A.B.C.D.【考点】二次根式的加减法;二次根式的乘除法.【分析】同类二次根式可以直接加减,在进行根式的乘除法时,根号里面的数可以直接乘除,由此可判断各选项.【解答】解:A、3﹣=2,故本选项错误;B、≠,故本选项错误;C、×=2,故本选项正确;D、÷=,故本选项错误.故选C.4.方程x2=42的解是()A.x1=x2=4B.x1=x2=16C.x1=﹣2,x2=2D.x1=﹣4,x2=4【考点】解一元二次方程-直接开平方法.第6页(共17页)【分析】两边开方,即可得出两个一元一次方程,即可得出选项.【解答】解:x2=42,∴x2=16,∴x=±4,即x1=4,x2=﹣4.故选D.5.下列各组长度的线段,成比例线段的是()A.1cm,cm,cm,cmB.3cm,4cm,5cm,6cmC.2cm,4cm,6cm,8cmD.10cm,5cm,6cm,4cm【考点】比例线段.【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.对选项一一分析,排除错误答案.【解答】解:A、1×=×,故本选项正确;B、3×5≠4×6,或3×6≠4≠5.故本选项错误;C、2×6≠4×8或2×8≠4×6,故本选项错误;D、10×4≠5×6,故本选项错误;故选:A.6.将一元二次方程x2﹣2x﹣5=0化成(x+a)2=b的形式,则b等于()A.1B.5C.6D.9【考点】解一元二次方程-配方法.【分析】方程常数项移动右边,两边都加上1即可得到结果.【解答】解:方程变形得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6,则b=6.故选C7.下列事件是必然发生的是()A.明天是星期一B.十五的月亮象细钩C.早上太阳从东方升起D.上街遇上朋友【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:明天是星期一是随机事件;十五的月亮象细钩是不可能事件;早上太阳从东方升起是必然事件;上街遇上朋友是随机事件,故选:C.8.下列说法:①所有的等腰直角三角形都相似;②所有的矩形都相似;③所有的菱形都相似;④所有的正方形都相似;⑤所有的正六边形都相似.其中,正确命题的个数为()A.1B.2C.3D.4【考点】命题与定理.第7页(共17页)【分析】根据等腰直角三角形的性质和三角形相似的判定方法对①进行判断;利用反例对②进行判断;根据菱形的性质对③进行判断;根据正方形和正六边形的性质和相似的定义可对④⑤进行判断.【解答】解:所有的等腰直角三角形都相似,所以①正确;所有的矩形不一定都相似,如边长为1和2的矩形与边长为1和1的矩形不相似,所以②错误;所有的菱形不一定相似,所以③错误;所有的正方形都相似,所以④正确;所有的正六边形都相似,所以⑤正确.故选C.9.如图,在△ABC中,∠C=90°,sinB=,则cosB等于()A.B.C.D.【考点】同角三角函数的关系.【分析】根据sin2B+cos2B=1及∠B为锐角,可得出cosB的值.【解答】解:∵sin2B+cos2B=1,sinB=,∴cosB=±,∵∠B为锐角,∴cosB=.故选D.10.掷两枚普通硬币一次,落地后出现两个正面都朝上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看两个正面向上的情况数占总情况数的多少即可.【解答】解:一共有4种情况,两个正面向上的有1种情况,∴这两个正面向上的概率是,故选A.第8页(共17页)11.如图,△ADB与△AEC相似,AB=3,DB=2,EC=6,则BC等于()A.9B.6C.5D.4【考点】相似三角形的性质.【分析】根据相似三角形的性质列出比例式,计算即可.【解答】解:∵△ADB∽△AEC,∴=,即=,解得,BC=6,故选:B.12.如图,把一个长方形划分成三个全等的小长方形,若要使每一个小长方形与原长方形相似,则原长方形长和宽之比为()A.3:1B.:1C.2:1D.:1【考点】相似多边形的性质.【分析】设出小长方形的边长,根据图形表示出大三角形的边长,再根据两图形相似,计算出比值.【解答】解:如图:设AB=y,BE=x,则BC=3x,∵每一个小长方形与原长方形相似,∴=,∴3x2=y2,∴=,∴==:1,故选B.第9页(共17页)13.如图,修建抽水站时,沿着坡度为i=1:的斜坡铺设水管,若测得水管A处铅垂高度为6m,则所铺设水管AC的长度为()A.8mB.10mC.12mD.18m【考点】解直角三角形的应用-坡度坡角问题.【分析】首先根据坡度的概念求得BC的长度,然后根据勾股定理求出AC的长度.【解答】解;∵该斜坡的坡度为i=1:,∴AB:BC=1:,∵AB=6m,∴BC=6m,则AC===12(m).故选C.14.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A.B.C.D.【考点】相似三角形的判定与性质;平行线之间的距离;全等三角形的判定与性质;等腰直角三角形.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,第10页(共17页)在△BCE与△ACF中,,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC===5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴=,=,解得CD=,在Rt△BCD中,∵CD=,BC=5,∴BD===.故选A.二、填空题(每小题4分,共16分)15.计算:=6.【考点】二次根式的乘除法.【分析】根据二次根式的乘法法则计算.【解答】解:==6.故答案为:616.化简:=1.【考点】二次根式的混合运算;平方差公式.【分析】利用平方差公式的形式进行化简计算,即可得出答案.【解答】解:原式=﹣12=1.故答案为:1.第11页(共17页)17.如图,AD垂直平分BC,DE∥AB,若AB=5,则DE的长为.【考点】线段垂直平分线的性质.【分析】根据平行线分线段成比例定理求出E为AC中点,根据三角形的中位线性质得出DE=AB,代入求出即可.【解答】解:∵AD垂直平分BC,∴BD=DC,∵DE∥AB,∴AE=CE,∵AB=5,∴DE=AB=,故答案为:.18.如图,在正方形网格上画有梯形ABCD,则∠BDC的度数为135°.
本文标题:海口市2016届九年级上第二次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543386 .html