您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 安徽省阜阳市2016届九年级上期末数学试卷含答案解析
安徽省阜阳市2016届九年级上学期期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.方程x(x+3)=x+3的解是()A.x=0B.x1=0,x2=﹣3C.x1=1,x2=3D.x1=1,x2=﹣32.观察下列图形,是中心对称图形的是()A.B.C.D.3.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位长度后,所得的函数表达式为()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x﹣1)2﹣24.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100°B.110°C.120°D.130°5.下列事件是必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意一个一元二次方程都有实数根D.在平面上任意画一个三角形,其内角和是180°6.某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146D.50+50(1+x)+50(1+2x)=1467.10名学生的身高如下(单位:cm)159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm的概率是()A.B.C.D.8.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5B.0,1C.﹣4,5D.﹣4,19.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知CD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△CMN),则剪下的△CMN的周长是()A.9cmB.12cmC.15cmD.18cm10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,将Rt△ABC绕点A逆时针旋转45°后得到△AB′C′,点B经过的路径为,图中阴影部分面积是()A.2πB.2C.4πD.4二、填空题(本题共4小题,每小题5分,共20分)11.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=.12.若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是cm2(结果保留π).13.如图,在⊙O的内接五边形ABCDE中,∠CAD=30°,则∠B+∠E=.14.如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(﹣1,0),有下列结论:①abc<0,②4a+b=0,③抛物线与x轴的另一个交点是(5,0),④若点(﹣2,y1),(5,y2)都在抛物线上,则有y1<y2,请将正确选项的序号都填在横线上.三、(本题共两小题,每小题8分,共16分)15.用适当的方法解方程:x2=2x+35.16.如图,AB是⊙O的直径,AB⊥弦CD,垂足为E,∠A=27°,CD=8cm,BE=2cm.(1)求⊙O的半径,(2)求的长度(结果保留π).四、(本题共两小题,每小题8分,共16分)17.已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.18.已知关于x的方程x2﹣4x+3k﹣1=0有两个不相等的实数根(1)求实数k的取值范围;(2)根据(1)中的结论,若k为正整数,求方程的两根之积.五、(本题共两小题,每小题10分,共20分)19.如图在边长为1个单位长度的小正方形组成的网格中,给出格点△ABC(顶点是网格线的交点)(1)请画出以A为旋转中心,将△ABC按逆时针方向旋转90°得到图形△A1B1C1,并写出各顶点坐标.(2)请画出△ABC向右平移4个单位长度后的图形△A2B2C2,并指出由△A1B1C1通过怎样的一次变换得到△A2B2C2?20.在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个,黑球1个,已知从中任意摸出一个球是白球的概率为.(1)口袋中有多少个红球?(2)从口袋中一次摸出2个球,求摸得一红一白的概率(要求画出树状图或列表).六、(本题满分12分)21.如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B(1)求证:PC是⊙O的切线;(2)若PC=6,PA=4,求直径AB的长.七、(本题满分12分)22.工人师傅用8米长的铝合金材料制作一个如图所示的矩形窗框,图中的①、②、③区域都是矩形,且BE=2AE,M,N分别是AD、EF的中点.(说明:图中黑线部分均需要使用铝合金材料制作,铝合金材料宽度忽略不计).(1)当矩形窗框ABCD的透光面积是2.25平方米时,求AE的长度.(2)当AE为多长时,矩形窗框ABCD的透光面积最大?最大面积是多少?八、(本题满分14分)23.如图1,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=4米,每个圆柱形桶的直径为0.5米,高为0.4米(网球的体积和圆柱形桶的厚度忽略不计).(1)在如图2建立的坐标下,求网球飞行路线的抛物线解析式;(2)若竖直摆放4个圆柱形桶时,则网球能落入桶内吗?说明理由;(3)若要网球能落入桶内,求竖直摆放的圆柱形桶的个数.安徽省阜阳市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.方程x(x+3)=x+3的解是()A.x=0B.x1=0,x2=﹣3C.x1=1,x2=3D.x1=1,x2=﹣3【考点】解一元二次方程-因式分解法.【分析】先移项,使方程右边为0,再提公因式(x+3),然后根据“两式相乘值为0,这两式中至少有一式值为0.”进行求解.【解答】解:原方程可化为:x(x+3)﹣(x+3)=0即(x﹣1)(x+3)=0解得x1=1,x2=﹣3故选D.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.2.观察下列图形,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误,故选:C.【点评】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.3.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位长度后,所得的函数表达式为()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x﹣1)2﹣2【考点】二次函数图象与几何变换.【分析】直接根据“左加右减,上加下减”的原则进行解答即可.【解答】解:由“左加右减,上加下减”的原则可知,将抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位长度,所得函数解析式为:y=﹣(x+1)2﹣2.故选B.【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键.4.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100°B.110°C.120°D.130°【考点】圆周角定理;圆内接四边形的性质.【分析】首先在优弧上取点E,连接BE,CE,由点B、D、C是⊙O上的点,∠BDC=130°,即可求得∠E的度数,然后由圆周角定理,即可求得答案.【解答】解:在优弧上取点E,连接BE,CE,如图所示:∵∠BDC=130°,∴∠E=180°﹣∠BDC=50°,∴∠BOC=2∠E=100°.故选:A.【点评】此题考查了圆周角定理以及圆的内接四边形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.下列事件是必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意一个一元二次方程都有实数根D.在平面上任意画一个三角形,其内角和是180°【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:打开电视机正在播放广告是随机事件,A不正确;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,B不正确;任意一个一元二次方程都有实数根是随机事件,C不正确;在平面上任意画一个三角形,其内角和是180°是必然事件,D正确;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146D.50+50(1+x)+50(1+2x)=146【考点】由实际问题抽象出一元二次方程.【专题】应用题;增长率问题.【分析】根据八、九月份平均每月的增长率相同,分别表示出八、九月份生产零件的个数列出方程,即可作出判断.【解答】解:根据题意得:八月份生产零件为50(1+x)(万个);九月份生产零件为50(1+x)2(万个),则x满足的方程是50(1+x)+50(1+x)2=146,故选C【点评】此题考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.10名学生的身高如下(单位:cm)159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率公式知,共有10人,身高超过165cm的有4人,故选一名学生,其身高超过165cm的概率是.【解答】解:10名学生中,其身高超过165cm的有4人,所以从中任选一名学生,其身高超过165cm的概率是.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5B.0,1C.﹣4,5D.﹣4,1【考点】二次函数的三种形式.【分析】可将y=(x﹣2)2+k的右边运用完全平方公式展开,再与y=x2+bx+5比较,即可得出b、k的值.【解答】解:∵y=(x﹣2)2+k=x2﹣4x+4+k=x2﹣4x+(4+k),又∵y=x2+bx+5,∴x2﹣4x+(4+k)=x2+bx+5,∴b=﹣4,k=1.故选D.【点评】本题实际上考查了两个多项式相等的条件:它们同类项的系数对应相等.9.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知CD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△CMN),则剪下的△CMN的周长是()A.9cmB.12cmC.15cmD.18cm【考点】三角形的内切圆与内心.【分析】利用切线长定理得出DM=MF,FN=EN,AD=AE,进而得出答案.【解答】解:如图所示:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=6cm,∴设E、F分别是⊙O的切点,故DM
本文标题:安徽省阜阳市2016届九年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543560 .html