您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2012年四川省广安市中考数学试题
智浪教育-普惠英才2012年广安中考数学试卷解析一、选择题:每小题给出的四个选项中,只有一个是符合题意要求的,请将符合要求的选项的代号填涂在机读卡上(每题3分,共30分)1.﹣8的相反数是()A.8B.﹣8C.D.﹣考点:相反数。分析:根据相反数的概念,互为相反数的两个数和为0,即可得出答案.解答:解:根据概念可知﹣8+(﹣8的相反数)=0,所以﹣8的相反数是8.故选A.点评:主要考查相反数概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()美元.A.1.5×104B.1.5×105C.1.5×1012D.1.5×1013考点:科学记数法—表示较大的数。分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于15000亿有13位,所以可以确定n=13﹣1=12.解答:解:15000亿=1500000000000=1.5×1012.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.下列运算正确的是()A.3a﹣a=3B.a2•a3=a5C.a15÷a3=a5(a≠0)D.(a3)3=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。专题:计算题。分析:根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.解答:解:A、3a﹣a=2a,故本选项错误;B、a2•a3=a5,故本选项正确;C、a15÷a3=a12(a≠0),故本选项错误;D、(a3)3=a9,故本选项错误;故选B.点评:此题考查了同底数幂的除法运算,解答本题要求我们掌握合并同类项的法则、完全平方公式及同底数幂的除法法则.4.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()智浪教育-普惠英才A.美B.丽C.广D.安考点:专题:正方体相对两个面上的文字。分析:这种展开图是属于“1,4,1”的类型,其中,上面的1和下面的1是相对的2个面.解答:解:由正方体的展开图特点可得:“建”和“安”相对;“设”和“丽”相对;“美”和“广”相对;故选D.点评:考查正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.5.下列说法正确的是()A.商家卖鞋,最关心的是鞋码的中位数B.365人中必有两人阳历生日相同C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定考点:方差;全面调查与抽样调查;统计量的选择;可能性的大小。分析:分别利用方差、全面调查与抽样调查、统计量的选择及可能性的大小的知识进行逐项判断即可.解答:解:A、商家卖鞋,最关心的鞋码是众数,故本选项错误;B、365天人中可能人人的生日不同,故本选项错误;C、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法,故本选项正确;D、方差越大,越不稳定,故本选项错误;故选C.点评:本题考查了方差、全面调查与抽样调查、统计量的选择及可能性的大小的知识,考查的知识点比较多,但比较简单.6.在平面直角坐标系xOy中,如果有点P(﹣2,1)与点Q(2,﹣1),那么:①点P与点Q关于x轴对称;②点P与点Q关于y轴对称;③点P与点Q关于原点对称;④点P与点Q都在y=﹣的图象上,前面的四种描述正确的是()A.①②B.②③C.①④D.③④考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标。专题:探究型。分析:分别根据关于x轴对称、关于y轴对称、关于原点对称及反比例函数图象上点的坐智浪教育-普惠英才标特点进行解答.解答:解:∵点P(﹣2,1)与点Q(2,﹣1),∴P、Q两点关于原点对称,故①②错误,③正确;∵(﹣2)×1=2×(﹣1﹣2,∴点P与点Q都在y=﹣的图象上,故④正确.故选D.点评:本题考查的是关于x轴对称、关于y轴对称、关于原点对称及反比例函数图象上点的坐标特点,熟知以上知识是解答此题的关键.7.如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则应水坡面AB的长度是()A.100mB.100mC.150mD.50m考点:解直角三角形的应用-坡度坡角问题。分析:根据题意可得=,把BC=50m,代入即可算出AC的长,再利用勾股定理算出AB的长即可.解答:解:∵堤坝横断面迎水坡AB的坡比是1,∴=,∵BC=50m,∴AC=50m,∴AB==100m,故选:A.点评:此题主要考查了解直角三角形的应用﹣坡度问题,关键是掌握坡度是坡面的铅直高度h和水平宽度l的比.8.已知关于x的一元二次方程(a﹣l)x2﹣2x+l=0有两个不相等的实数根,则a的取值范围是()A.a>2B.a<2C.a<2且a≠lD.a<﹣2考点:根的判别式。专题:计算题。分析:利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.解答:解:△=4﹣4(a﹣1)=8﹣4a>0智浪教育-普惠英才得:a<2.又a﹣1≠0∴a<2且a≠1.故选C.点评:本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.9.已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°B.75°C.45°或75°D.60°考点:等腰三角形的性质;含30度角的直角三角形;等腰直角三角形。分析:首先根据题意画出图形,注意分别从∠BAC是顶角与∠BAC是底角去分析,然后利用等腰三角形与直角三角形的性质,即可求得答案.解答:解:如图1:AB=AC,∵AD⊥BC,∴BD=CD=BC,∠ADB=90°,∵AD=BC,∴AD=BD,∴∠B=45°,即此时△ABC底角的度数为45°;如图2,AC=BC,∵AD⊥BC,∴∠ADC=90°,∵AD=BC,∴AD=AC,∴∠C=30°,∴∠CAB=∠B==75°,即此时△ABC底角的度数为75°;综上,△ABC底角的度数为45°或75°.故选C.智浪教育-普惠英才点评:此题考查了等腰三角形的性质、直角三角形的性质以及三角形内角和定理.此题难度适中,注意数形结合思想与分类讨论思想的应用是解此题的关键.10.时钟在正常运行时,时针和分针的夹角会随着时间的变换而变化,设时针与分针的夹角为y度,运行时间为t分,当时间从3:00开始到3:30止,图中能大致表示y与t之间的函数关系的图象是()A.B.C.D.考点:函数的图象。分析:根据分针从3:00开始到3:30过程中,时针与分针夹角先减小,一直到重合,再增大到75°,即可得出符合要求的图象.解答:解:∵设时针与分针的夹角为y度,运行时间为t分,当时间从3:00开始到3:30止,∴当3:00时,y=90°,当3:30时,时针在3和4中间位置,故时针与分针夹角为:y=75°,又∵分针从3:00开始到3:30过程中,时针与分针夹角先减小,一直到重合,再增大到75°,故只有D符合要求,故选:D.点评:本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题:请把最简答案直接填写在题目的横线上(每小题3分,共18分)11.分解因式:3a2﹣12=3(a+2)(a﹣2).考点:提公因式法与公式法的综合运用。分析:先提取公因式3,再对余下的多项式利用平方差公式继续分解.解答:解:3a2﹣12=3(a+2)(a﹣2).点评:本题考查了提公因式法,公式法分解因式,提取公因式后要继续利用平方差公式进行因式分解,分解因式要彻底,直到不能再分解为止.12.实数m、n在数轴上的位置如图所示,则|n﹣m|=m﹣n.考点:实数与数轴。分析:首先观察数轴,可得n<m,然后由绝对值的性质,可得|n﹣m|=﹣(n﹣m),则可求得答案.解答:解:如图可得:n<m,智浪教育-普惠英才即n﹣m<0,则|n﹣m|=﹣(n﹣m)=m﹣n.故答案为:m﹣n.点评:此题考查了利用数轴比较实数的大小的知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.13.不等式2x+9≥3(x+2)的正整数解是1,2,3.考点:一元一次不等式的整数解。专题:计算题。分析:先解不等式,求出其解集,再根据解集判断其正整数解.解答:解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.点评:本题考查了一元一次不等式的整数解,会解不等式是解题的关键.14.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=240度.考点:多边形内角与外角。专题:数形结合。分析:利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.解答:解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为240.点评:考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.15.如图,Rt△ABC的边BC位于直线l上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为(4+)π(结果用含有π的式子表示)智浪教育-普惠英才考点:弧长的计算;旋转的性质。分析:根据含30度的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°;点A先是以B点为旋转中心,顺时针旋转120°到A1,再以点C1为旋转中心,顺时针旋转90°到A2,然后根据弧长公式计算两段弧长,从而得到点A第3次落在直线l上时,点A所经过的路线的长.解答:解:∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC在直线l上无滑动的翻转,且点A第3次落在直线l上时,有3个的长,2个的长,∴点A经过的路线长=×3+×2=(4+)π.故答案为:(4+)π.点评:本题考查了弧长公式:l=(其中n为圆心角的度数,R为半径);也考查了旋转的性质以及含30度的直角三角形三边的关系.16.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.考点:二次函数图象与几何变换。分析:根据点O与点A的坐标求出平移后的抛物线的对称轴,然后求出点P的坐标,过点智浪教育-普惠英才P作PM⊥y轴于点M,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO的面积,然后求解即可.解答:解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=3×|﹣|=.故答案为:.点评:本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.三、解答题(本大题共4个小题,第17题5分,其它各6分,共23分)17.计算:﹣(﹣)﹣cos45°+3﹣1.考点:实数的运算;负整数指数幂;特殊角的三角函数值。专题:计算题。分析:先将二次根式化为最简,然后计算负整数指数幂,代入特殊角的三角函数值,最后合并即可.解答:解:原式=+﹣+=+1.点评:此题考查了实数的运算,解答本题的关
本文标题:2012年四川省广安市中考数学试题
链接地址:https://www.777doc.com/doc-7548020 .html