您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 2015中考数学试卷分类汇编:圆(5)试题
2015中考数学真题分类汇编:圆(5)一.填空题(共30小题)1.(2015•达州)已知正六边形ABCDEF的边心距为cm,则正六边形的半径为cm.2.(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为cm2.3.(2015•眉山)已知⊙O的内接正六边形周长为12cm,则这个圆的半经是cm.4.(2015•台州)如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为.5.(2015•天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.X|k|B|1.c|O|m6.(2015•西宁)圆心角为120°,半径为6cm的扇形的弧长是cm.7.(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).8.(2015•恩施州)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.9.(2015•安徽)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是.XkB1.com10.(2015•盐城)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为.11.(2015•广西)已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是.12.(2015•巴中)圆心角为60°,半径为4cm的扇形的弧长为cm.13.(2015•遂宁)在半径为5cm的⊙O中,45°的圆心角所对的弧长为cm.14.(2015•益阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为.15.(2015•温州)已知扇形的圆心角为120°,弧长为2π,则它的半径为.16.(2015•泰州)圆心角为120°,半径长为6cm的扇形面积是cm2.17.(2015•酒泉)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.18.(2015•重庆)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).19.(2015•衡阳)圆心角为120°的扇形的半径为3,则这个扇形的面积为(结果保留π).20.(2015•宁夏)已知扇形的圆心角为120°,所对的弧长为,则此扇形的面积是..(2015•河南)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.22.(2015•重庆)如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是.(结果保留π)23.(2015•哈尔滨)一个扇形的半径为3cm,面积为πcm2,则此扇形的圆心角为度.24.(2015•乐山)如图,已知A(2,2)、B(2,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,2)的位置,则图中阴影部分的面积为.25.(2015•湖北)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.26.(2015•长沙)圆心角是60°且半径为2的扇形面积为(结果保留π).27.(2015•湖州)如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.28.(2015•永州)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为.29.(2015•遵义)如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.30.(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为cm2.2015中考数学真题分类汇编:圆(5)参考答案与试题解析一.填空题(共30小题)1.(2015•达州)已知正六边形ABCDEF的边心距为cm,则正六边形的半径为2cm.考点:正多边形和圆.分析:根据题意画出图形,连接OA、OB,过O作OD⊥AB,再根据正六边形的性质及锐角三角函数的定义求解即可.解答:解:如图所示,连接OA、OB,过O作OD⊥AB,∵多边形ABCDEF是正六边形,∴∠OAD=60°,∴OD=OA•sin∠OAB=AO=,解得:AO=2..故答案为:2.点评:本题考查的是正六边形的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.2.(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为24cm2.考点:正多边形和圆.分析:根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.解答:解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OA•cos30°,∴OA===4,∴这个正六边形的面积为6××4×2=24cm2.故答案为:24.点评:此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质即锐角三角函数的定义解答即可.3.(2015•眉山)已知⊙O的内接正六边形周长为12cm,则这个圆的半经是2cm.考点:正多边形和圆.分析:首先求出∠AOB=×360°,进而证明△OAB为等边三角形,问题即可解决.解答:解:如图,∵⊙O的内接正六边形ABCDEF的周长长为12cm,∴边长为2cm,∵∠AOB=×360°=60°,且OA=OB,∴△OAB为等边三角形,∴OA=AB=2,即该圆的半径为2,故答案为:2.点评:本题考查了正多边形和圆,以正多边形外接圆、正多边形的性质等几何知识点为考查的核心构造而成;灵活运用有关定理来分析、判断、推理或解答是关键.4.(2015•台州)如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为﹣.考点:正多边形和圆;轨迹.分析:当正六边形EFGHIJ的边长最大时,要使AE最小,以点H(H与O重合)为圆心,对角线EH为半径的圆应与正方形ABCD相切,且点E在线段OA上,如图所示,只需求出OE、OA的值,就可解决问题.解答:解:当这个正六边形的边长最大时,作正方形ABCD的内切圆⊙O.当正六边形EFGHIJ的顶点H与O重合,且点E在线段OA上时,AE最小,如图所示.∵正方形ABCD的边长为1,∴⊙O的半径OE为,AO=AC=×=,则AE的最小值为﹣.故答案为﹣.点评:本题是有关正多边形与圆的问题,考查了正方形的内切圆、圆外一点与圆上点的最短距离、勾股定理等知识,正确理解题意是解决本题的关键.5.(2015•天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是4π.考点:弧长的计算;等边三角形的性质.专题:压轴题.分析:弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3,利用弧长的计算公式可以求得三条弧长,三条弧的和就是所求曲线的长.解答:解:弧CD的长是=,弧DE的长是:=,弧EF的长是:=2π,则曲线CDEF的长是:++2π=4π.故答案是:4π.点评:本题考查了弧长的计算公式,理解弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3是解题的关键.6.(2015•西宁)圆心角为120°,半径为6cm的扇形的弧长是4πcm.考点:弧长的计算.专题:应用题.分析:弧长的计算公式为l=,将n=120°,R=6cm代入即可得出答案.解答:解:由题意得,n=120°,R=6cm,故可得:l==4πcm.故答案为:4π.点评:此题考查了弧长的计算公式,属于基础题,解答本题的关键是掌握弧长的计算公式及公式字母所代表的含义.7.(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).考点:弧长的计算;等边三角形的判定与性质;菱形的性质.分析:B,C两点恰好落在扇形AEF的上,即B、C在同一个圆上,连接AC,易证△ABC是等边三角形,即可求得的圆心角的度数,然后利用弧长公式即可求解.解答:解:∵菱形ABCD中,AB=BC,又∵AC=AB,∴AB=BC=AC,即△ABC是等边三角形.∴∠BAC=60°,∴弧BC的长是:=,故答案是:.点评:本题考查了弧长公式,理解B,C两点恰好落在扇形AEF的弧EF上,即B、C在同一个圆上,得到△ABC是等边三角形是关键.8.(2015•恩施州)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于5π.考点:弧长的计算;旋转的性质.分析:根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.解答:解:由图形可知,圆心先向前走OO1的长度即圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π,故答案为:5π.点评:本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.9.(2015•安徽)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是20°.考点:弧长的计算;圆周角定理.分析:连结OA、OB.先由的长为2π,利用弧长计算公式求出∠AOB=40°,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得到∠ACB=∠AOB=20°.解答:解:连结OA、OB.设∠AOB=n°.∵的长为2π,∴=2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°.故答案为20°.点评:本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),同时考查了圆周角定理.10.(2015•盐城)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为.考点:弧长的计算;含30度角的直角三角形.分析:连接AE,根据直角三角形的性质求出∠DEA的度数,根据平行线的性质求出∠EAB的度数,根据弧长公式求出的长度.解答:解:连接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴的长度为:=,故答案为:.点评:本题考查的是弧长的计算和直角三角形的性质,掌握在直角三角形中,30°所对的直角边是斜边的一半和弧长公式是解题的关键.11.(2015•广西)已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是50°.考点:弧长的计算.分析:把弧长公式l=进行变形,把已知数据代入计算即可得到答案.解答:解:∵l=,∴n===50°,故答案为:50°.点评:本题考查的是弧长的计算,正确掌握弧长的计算公式及其变形是解题的关键.12.(2015•巴中)圆心角为60°,半径为4cm的扇形的弧长为πcm.考点:弧长的计算.分析:根据弧长公式进行求解即可.解答:解:L===π.故答案为:π.点评:本题考查了弧长的计算,解答本题的关键是掌握弧
本文标题:2015中考数学试卷分类汇编:圆(5)试题
链接地址:https://www.777doc.com/doc-7553173 .html