您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017-2018学年北京市丰台区八年级上期末数学试卷(含答案解析)
2017-2018学年北京市丰台区八年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)1.若在实数范围内有意义,则x的取值范围()A.x≥2B.x≤2C.x>2D.x<22.如图所示,△ABC中AC边上的高线是()A.线段DAB.线段BAC.线段BCD.线段BD3.甲骨文是中国的一种古代文字,又称“契文”、“甲骨卜辞”、“殷墟文字”或“龟甲兽骨文”,是汉字的早期形式,是现存中国王朝时期最古老的一种成熟文字,如图为甲骨文对照表中的部分内容,其中可以抽象为轴对称图形的甲骨文对应的汉字是()A.方B.雷C.罗D.安4.有一个质地均匀且可以转动的转盘,盘面被分成6个全等的扇形区域,在转盘的适当地方涂上灰色,未涂色部分为白色,用力转动转盘,为了使转盘停止时,指针指向灰色的可能性的大小是,那么下列涂色方案正确的是()A.B.C.D.5.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B分别代表的是()A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠06.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°7.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+bB.+C.D.8.一部记录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:“在未来20年,A城市发生地震的机会是三分之二”对这位专家的陈述下面有四个推断:①×20≈13.3,所以今后的13年至14年间,A城市会发生一次地震;②大于50%,所以未来20年,A城市一定发生地震;③在未来20年,A城市发生地震的可能性大于不发生地震的可能性;④不能确定在未来20年,A城市是否会发生地震;其中合理的是()A.①③B.②③C.②④D.③④二、填空题(本题共22分,第9-10提,每小题2分,第11-16题,每小题2分)9.若分式的值为0,则x=.10.27的立方根为.11.化简的结果是.12.一个不透明的盒子中装有4个白球,5个红球,这些球除颜色外无其他区别,从这个盒子中随意摸出一个球,摸到红球的可能性的大小是.13.一个正方形的面积是10cm2,那么这个正方形的边长约是cm(结果保留一位小数)14.小东认为:任意抛掷一个啤酒盖,啤酒盖落地后印有商标一面向上的可能性的大小是,你认为小东的想法(“合理”或“不合理”),理由是.15.将一副三角板按图中方式叠放,则角α的度数为.16.阅读下面材料:在数学课上,老师提出如下问题:如图1,P,Q是直线l同侧两点,请你在直线l上确定一个点R,使△PQR的周长最小.小阳的解决方法如下:如图2,(1)作点Q关于直线l的对称点Q;(2)连接PQ′交直线l于点R;(3)连接RQ,PQ.所以点R就是使△PQR周长最小的点.老师说:“小阳的作法正确.”请回答:小阳的作图依据是.三、解答题(本题共62分,第17题5分,第18-23题,每小题5分,第24-26题,每小题5分)17.计算:(1﹣)÷.18.计算:×3﹣+|1﹣|.19.解方程:=+1.20.如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.21.先化简,再求值:(+)•,其中x=﹣3.22.列方程或方程组解应用题:某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.23.在平面直角坐标系xOy中,点A(0,2),点B(1,0),点C为x轴上一点,且△ABC是以AB为腰的等腰三角形.(1)请在坐标系中画出所有满足条件的△ABC;(2)直接写出(1)中点C的坐标.24.小刚根据学习“数与式”的经验,想通过由“特殊到一般”的方法探究下面二次根式的运算规律.以下是小刚的探究过程,请补充完整;(1)具体运算,发现规律.特例1:=;特例2:=;特例3:=;特例4:(举一个符合上述运算特征的例子)(2)观察、归纳,得出猜想.如果n为正整数,用含n的式子表示这个运算规律;.(3)证明猜想,确认猜想的正确性.25.如图,△ABC是等边三角形,点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE=AF,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:利用AD是∠EDF的角平分线,构造△ADF的全等三角形,然后通过等腰三角形的相关知识获证.想法2:利用AD是∠EDF的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.…请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)26.如图,△ABC中,∠ACB=90°,AC=BC,在△ABC外侧作直线CP,点A关于直线CP的对称点为D,连接AD,BD,其中BD交直线CP于点E.(1)如图1,∠ACP=15°.①依题意补全图形;②求∠CBD的度数;(2)如图2,若45°<∠ACP<90°,直接用等式表示线段AC,DE,BE之间的数量关系.2017-2018学年北京市丰台区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.若在实数范围内有意义,则x的取值范围()A.x≥2B.x≤2C.x>2D.x<2【分析】二次根式有意义,被开方数为非负数,即x﹣2≥0,解不等式求x的取值范围.【解答】解:∵在实数范围内有意义,∴x﹣2≥0,解得x≥2.故选:A.【点评】本题考查了二次根式有意义的条件.关键是明确二次根式有意义时,被开方数为非负数.2.如图所示,△ABC中AC边上的高线是()A.线段DAB.线段BAC.线段BCD.线段BD【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【解答】解:由图可得,△ABC中AC边上的高线是BD,故选:D.【点评】本题主要考查了三角形的高线,钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.3.甲骨文是中国的一种古代文字,又称“契文”、“甲骨卜辞”、“殷墟文字”或“龟甲兽骨文”,是汉字的早期形式,是现存中国王朝时期最古老的一种成熟文字,如图为甲骨文对照表中的部分内容,其中可以抽象为轴对称图形的甲骨文对应的汉字是()A.方B.雷C.罗D.安【分析】根据轴对称图形的概念观察图形判断即可.【解答】解:由图可知,是轴对称图形的只有“罗”.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.有一个质地均匀且可以转动的转盘,盘面被分成6个全等的扇形区域,在转盘的适当地方涂上灰色,未涂色部分为白色,用力转动转盘,为了使转盘停止时,指针指向灰色的可能性的大小是,那么下列涂色方案正确的是()A.B.C.D.【分析】指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可.【解答】解:A、指针指向灰色的概率为2÷6=,故选项正确;B、指针指向灰色的概率为3÷6=,故选项错误;C、指针指向灰色的概率为4÷6=,故选项错误;D、指针指向灰色的概率为5÷6=,故选项错误.故选:A.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B分别代表的是()A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠0【分析】根据解分式方程的步骤,可得答案.【解答】解:去分母得依据是等式基本性质2,检验时最简公分母等于零,原分式方程无解故选:C.【点评】本题考查了解分式方程,利用解分式方程的步骤是解题关键.6.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【解答】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故选:B.【点评】此题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB=OA=AB.7.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+bB.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.8.一部记录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:“在未来20年,A城市发生地震的机会是三分之二”对这位专家的陈述下面有四个推断:①×20≈13.3,所以今后的13年至14年间,A城市会发生一次地震;②大于50%,所以未来20年,A城市一定发生地震;③在未来20年,A城市发生地震的可能性大于不发生地震的可能性;④不能确定在未来20年,A城市是否会发生地震;其中合理的是()A.①③B.②③C.②④D.③④【分析】根据概率的意义,可知发生地震的概率是三分之二,说明发生地震的可能性大于不发生地政的可能性,从而可以解答本题.【解答】解:∵一位专家指出:在未来的20年,A市发生地震的机会是三分之二,∴未来20年内,A市发生地震的可能性比没有发生地震的可能性大;不能确定在未来20年,A城市是否会发生地震,故选:D.【点评】本题考查概率的意义,解题的关键是明确概率的意义,理论联系实际.二、填空题(本题共22分,第9-10提,每小题2分,第11-16题,每小题2分)9.若分式的值为0,则x=2.【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=2.故答案为:2.【点评】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.10.27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.11.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.12.一个不透明的盒子中装有4个白球,5个红球,这些球除颜色外无其他区别,从这个盒子中随意摸出一个球,摸到红球的可能性的大小是.【分析】先求出袋子中总的球数,再用红球的个数除以总的球数即可.【解答】解:∵袋子中装有4个白球和5个红球,共有9个球,∴从袋子中随机摸出一个球是红球的概率是,故答案为:.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.一个正方形的面积是10cm2,那么这个正方形的边长约是3.2cm(结果保留一位小数)【分析】直接利用算术平方根的求法结合正方形面积求法得出答案.【解答】解:∵
本文标题:2017-2018学年北京市丰台区八年级上期末数学试卷(含答案解析)
链接地址:https://www.777doc.com/doc-7559496 .html