您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 2017年全国初中数学联合竞赛(四川初三初赛)试题参考答案及评分标准
2017年全国初中数学联合竞赛(四川初赛)试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.选择题和填空题只设7分和0分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、B2、C3、D4、A5、B6、C二、填空题(本题满分28分,每小题7分)7、38、409、1910、4三、(本大题满分20分)11、已知关于x的一元二次方程x2kx50与x25xk0只有一个公共的实根,求关于x的方程|x2kx||k|所有的实根之和。解:设x2kx50与x25xk0的公共实根为,则2k50,25k0,············································(5分)两式相减,得(k5)(k5)0.·········································(10分)因为当k5时两方程相同,有两个公共的实根,不合题意.所以k≠5.因此1.从而求得k6.················································(15分)所以方程|x2kx||k|即为|x26x|6,x26x6或x26x6.显然两方程都有实根,因此方程所有实根之和是12.············(20分)四、(本大题满分25分)12、如图,已知圆O的直径AB与CD互相垂直,E为OB中点,CE的延长线交圆O于G,AG交CD于F,求DFFC的值。解:设OEa,则OAOBOCOD2a,CE5a,因为△COE∽△CGD,所以COCGOEGDCECD,所以CGCOCDCE245aaa855a,所以EGCGCE355a。················································(10分)过G作GH⊥AB于点H,则△COE∽△GHE,所以COGHOEHECEGE53,所以GH65a,HE35a,于是AH185a。HFGEDCOAB由△AOF∽△AHG,得OFHGAOAH59,所以OF23a。·······························································(20分)从而DF43a,FC83a。所以DFFC12。······························(25分)法2:连结BG、AC。设OEBEa,则OAOBOCOD2a,CE5a,因为△ACE∽△GBE,所以ACGBAEGECEBE,又AC22a,所以BG85a。·····························································(10分)在Rt△ABG中,由勾股定理可得AG22ABBG228165aa725a。又因为△AOF∽△AGB,所以AOAGOFBG,所以OFAOBGAG825725aaa23a。····································(20分)从而DF43a,FC83a。所以DFFC12。······························(25分)法3:设OEa,则OAOBOCOD2a,CE5a,因为△COE∽△CGD,所以COCGOEGDCECD,所以DGOECDCE45aaa455a,CGCOCDCE245aaa855a,··········································(10分)过G作GH⊥CD于点H,则△DGH∽△DCG,所以DGDCDHDGGHCG,可得DH2DGDC21654aa45a,GHDGCGDC23254aa85a,由△AOF∽△GHF,得AOGHOFFH,所以OFFH54,又OFFH2a45a65a,所以OF23a。·······························································(20分)FGEDCOABHFGEDCOAB从而DF43a,FC83a。所以DFFC12。······························(25分)五、(本大题满分25分)13、已知a、b、c、d、x、y、z、w是互不相等的非零实数,且222222abaybx222222bcbzcy222222cdcwdzabcdxyzw.求22ax22by22cz22dw的值.解:将每个已知分式分子分母交换,得222222aybxab222222bzcybc222222cwdzcdxyzwabcd.()··············(5分)即22xa22yb22yb22zc22zc22wd,易得xa±zc,yb±wd.·········(10分)设zcu,wdv,当xau,ybv或xau,ybv时,则由22zc22wdxyzwabcd得,u2v2u2v2.显然不可能成立,舍去。··················································(15分)当xau,ybv或xau,ybv时,则由22zc22wdxyzwabcd得,u2v2u2v2.···································(20分)而22ax22by22cz22dw2(21u21v)22222uvuv2.····················(25分)
本文标题:2017年全国初中数学联合竞赛(四川初三初赛)试题参考答案及评分标准
链接地址:https://www.777doc.com/doc-7559821 .html