您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2018-2019学年广州市越秀区九年级上期末数学模拟试卷(含答案)
2018-2019学年广东省广州市越秀区九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+33.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数4.已知x=3是关于x的一元二次方程x2﹣2x﹣m=0的根,则该方程的另一个根是()A.3B.﹣3C.1D.﹣15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=4,BC的中点为D.将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是()A.4B.6C.2+2D.86.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cmB.4cmC.4.5cmD.5cm7.下列关于抛物线y=3(x﹣1)2+1的说法,正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(﹣1,1)D.有最小值y=18.关于x的一元二次方程kx2+2x﹣1=0有两个不相等实数根,则k的取值范围是()A.k>﹣1B.k≥﹣1C.k≠0D.k>﹣1且k≠09.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点A、B的对应点分别为A',B'.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F'与点F重合,则点F的坐标是()A.(1,4)B.(1,5)C.(﹣1,4)D.(4,1)10.已知正六边形的边长为4,则它的内切圆的半径为()A.1B.C.2D.2二.填空题(共6小题,满分18分,每小题3分)11.若一平行四边形的3个顶点坐标分别为(0,0),(4,0),(2,4),则第4个顶点坐标是.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.13.抛物线y=2(x+1)2﹣3的顶点坐标为.14.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.15.若矩形ABCD的两邻边长分别为一元二次方程x2﹣6x+4=0的两个实数根,则矩形ABCD的周长为.16.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的面积之比为1:3,则相似比为.三.解答题(共9小题,满分102分)17.解方程:x(x+4)=﹣3(x+4).18.在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)(1)画出△ABC关于原点对称的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,画出旋转后得到的△A″B″C″,并直接写出此过程中线段C'A'扫过图形的面积.(结果保留π)19.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.如图,AC是▱ABCD的对角线,在AD边上取一点F,连接BF交AC于点E,并延长BF交CD的延长线于点G.(1)若∠ABF=∠ACF,求证:CE2=EF•EG;(2)若DG=DC,BE=6,求EF的长.21.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.22.如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)23.抛物线y=ax2+2ax+c(a>0,c<0),与x轴交于A、B两点(A在B左侧),与y轴交于点C,A点坐标为(﹣3,0),抛物线顶点为D,△ACD的面积为3.(1)求二次函数解析式;(2)点P(m,n)是抛物线第三象限内一点,P关于原点的对称点Q在第一象限内,当QB2取最小值时,求m的值.24.如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.25.已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.2.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.3.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.4.【解答】解:设方程的另一个根为x1,根据题意得:x1+3=2,解得:x1=﹣1.故选:D.5.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=AC÷cos30°=4÷=8,BC=AC•tan30°=4×=4,∵BC的中点为D,∴CD=BC=×4=2,连接CG,∵△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,∴CG=EF=AB=×8=4,由三角形的三边关系得,CD+CG>DG,∴D、C、G三点共线时DG有最大值,此时DG=CD+CG=2+4=6.故选:B.6.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.7.【解答】解:抛物线y=3(x﹣1)2+1中a=3>0,开口向上;对称轴为直线x=1;顶点坐标为(1,1);当x=1时取得最小值y=1;故选:D.8.【解答】解:根据题意得k≠0且△=22﹣4k×(﹣1)>0,所以k>﹣1且k≠0.故选:D.9.【解答】解:由点A到A′,可得方程组;由B到B′,可得方程组,解得,设F点的坐标为(x,y),点F′点F重合得到方程组,解得,即F(1,4).故选:A.10.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为4的正六边形,∴△OAB是等边三角形,∴OA=AB=4,∴OG=OA•sin60°=4×=2,∴边长为4的正六边形的内切圆的半径为:2.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:如图,第4个顶点坐标是(6,4)或(﹣2,4)或(2,﹣4).故答案为:(6,4)或(﹣2,4)或(2,﹣4).12.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.13.【解答】解:顶点坐标是(﹣1,﹣3).故答案为:(﹣1,﹣3).14.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴==2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为:4.15.【解答】解:∵设矩形ABCD的两邻边长分别为α、β是一元二次方程x2﹣6x+4=0的两个实数根,∴α+β=6,∴矩形ABCD的周长为6×2=12.故答案为:12.16.【解答】解:∵△ABC∽△A′B′C′,△ABC与△A′B′C′的面积之比为1:3,∴△ABC与△A′B′C′的相似比为1:.故答案为:1:.三.解答题(共9小题,满分102分)17.【解答】解:x(x+4)+3(x+4)=0,(x+4)(x+3)=0,x+4=0或x+3=0,所以x1=﹣4,x2=﹣3.18.【解答】解:(1)如图所示,△A'B'C'即为所求.(2)如图所示,△A″B″C″即为所求,∵A′C′==3,∠A′C′A″=90°,∴线段C'A'扫过图形的面积=π.19.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.20.【解答】解:(1)∵AB∥CG,∴∠ABF=∠G,又∵∠ABF=∠ACF,∴∠ECF=∠G,又∵∠CEF=∠CEG,∴△ECF∽△EGC,∴,即CE2=EF•EG;(2)∵平行四边形ABCD中,AB=CD,又∵DG=DC,∴AB=CD=DG,∴AB:CG=1:2,∵AB∥CG,∴,即,∴EG=12,BG=18,∵AB∥DG,∴,∴BF=BG=9,∴EF=BF﹣BE=9﹣6=3.21.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.22.【解答】解:(1)⊙O如图所示;(2)作OH⊥BC于H.∵AC是⊙O的切线,∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO是矩形,∴OE=CH=,BH=BC﹣CH=,在Rt△OBH中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.23.【解答】解:(1)把A(﹣3,0)代入y=ax2+2ax+c得到c=﹣3a,∴抛物线的解析式为y=ax2+2ax﹣3a=a(x+1)2﹣4a,∴D(﹣1,﹣4a),C(0,﹣3a),∵S△ACD=S△AOD+S△OCD﹣S△AOC,∴×3×4a+×3a×1﹣×3×3a=15,解得
本文标题:2018-2019学年广州市越秀区九年级上期末数学模拟试卷(含答案)
链接地址:https://www.777doc.com/doc-7560098 .html