您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018-2019学年济宁市金乡县九年级上期末数学模拟试卷(含答案)
2018-2019学年山东省济宁市金乡县九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.在下图的四个立体图形中,从正面看是四边形的立体图形有()A.1个B.2个C.3个D.4个2.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在()A.点C1处B.点C2处C.点C3处D.点C4处3.关于x的方程x2﹣2mx+4=0有两个不同的实根,并且有一个根小于1,另一个根大于3,则实数m的取值范围为()A.m>B.m<﹣C.m<﹣2或m>2D.m>4.若反比例函数y=(k≠0)的图象经过点P(2,﹣3),则该函数的图象不经过的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)5.如图(1),在正方形铁皮上剪下一个圆形和扇形,使之恰好围成图(2)所示的一个圆锥模型,则圆的半径r与扇形的半径R之间的关系为()A.R=2rB.R=rC.R=3rD.R=4r6.如图,某轮船在点O处测得一个小岛上的电视塔A在北偏西60°的方向,船向西航行20海里到达B处,测得电视塔A在船的西北方向,若要轮船离电视塔最近,则还需向西航行()A.海里B.海里C.海里D.海里7.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=4m,则坡面AB的长度是()A.mB.4mC.2mD.4m8.如图,⊙A经过点E、B、C、O,且C(0,8),E(﹣6,0),O(0,0),则cos∠OBC的值为()A.B.C.D.9.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有()个.A.1B.2C.3D.410.如图,在△ABC中,BC的垂直平分线交AC于点E,交BC于点D,且AD=AB,连接BE交AD于点F,下列结论:()①∠EBC=∠C;②△EAF∽△EBA;③BF=3EF;④∠DEF=∠DAE,其中结论正确的个数有A.1个B.2个C.3个D.4个二.填空题(共5小题,满分15分,每小题3分)11.计算;sin30°•tan30°+cos60°•tan60°=.12.将抛物线y=x2+2x向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的表达式为;13.如图,将直角坐标系中的△ABO绕点O旋转90°得到△CDO,则点D的坐标是.14.在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是.15.如图,在反比例函数y=﹣的图象上有一点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,若tan∠CAB=3,则k=.三.解答题(共7小题,满分55分)16.解方程(1)4x2﹣8x+3=0(2)x(x+6)=717.在四张背面完全相同的纸牌A、B、C、D中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.18.如图,在平面直角坐标系xOy中,已知直线y=x与反比例函数y=(k≠0)的图象交于点A,且点A的横坐标为1,点B是x轴正半轴上一点,且AB⊥OA.(1)求反比例函数的解析式;(2)求点B的坐标;(3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OA、OB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)19.在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)20.如图1,以△ABC的边AB为直径作⊙O,交AC边于点E,BD平分∠ABE交AC于F,交⊙O于点D,且∠BDE=∠CBE.(1)求证:BC是⊙O的切线;(2)延长ED交直线AB于点P,如图2,若PA=AO,DE=3,DF=2,求的值及AO的长.21.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.销售单价x(元)3.55.5销售量y(袋)280120(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?22.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:正方体的正视图是四边形;球的正视图是圆;圆锥的正视图是等腰三角形;圆柱的正视图是四边形;是四边形的有两个.故选:B.2.【解答】解:过点C作CD⊥直线AB于点D,如图所示.∵AB=5,△ABC的面积为10,∴CD=4.∵sinA=,∴AC=4,∴AD==8,∴点C在点C4处.故选:D.3.【解答】解:∵x的方程x2﹣2mx+4=0有两个不同的实根,∴△=4m2﹣16>0,∴m>2或m<﹣2,∵方程x2﹣2mx+4=0对应的二次函数,f(x)=x2﹣2mx+4的开口向上,而方程x2﹣2mx+4=0有两个不同的实根,并且有一个根小于1,另一个根大于3,∴f(1)<0,且f(3)<0,∴,∴m>,∵m>2或m<﹣2,∴∴m>,故选:A.4.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6∴解析式y=当x=3时,y=﹣2当x=1时,y=﹣6当x=﹣1时,y=6∴图象不经过点(﹣1,﹣6)故选:D.5.【解答】解:∵扇形的弧长==,圆的周长为2πr,∴=2πr,R=4r,故选:D.6.【解答】解:作AC⊥OB于C点,只要到C处,轮船离电视塔最近,求出BC长即可,由已知得:∠AOB=30°,∠ABC=45°、OB=20海里,∴BC=AC,CO=AC÷tan∠AOB=AC÷tan30°=,∵CO﹣CB=﹣AC=20,解得:AC=海里,∴BC=AC=10(+1)海里,故选:A.7.【解答】解:∵迎水坡AB的坡比是1:,∴BC:AC=1:,BC=4m,∴AC=4m,则AB==4(m).故选:D.8.【解答】解:连接EC,∵∠COE=90°,∴EC是⊙A的直径,∵C(0,8),E(﹣6,0),O(0,0),∴OC=8,OE=6,由勾股定理得:EC=10,∵∠OBC=∠OEC,∴cos∠OBC=cos∠OEC==.故选:A.9.【解答】解:抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,故①错误;由于对称轴为x=﹣1,∴x=﹣3与x=1关于x=﹣1对称,∵x=﹣3时,y<0,∴x=1时,y=a+b+c<0,故③正确;∵对称轴为x=﹣=﹣1,∴2a﹣b=0,故②正确;∵顶点为B(﹣1,3),∴y=a﹣b+c=3,∴y=a﹣2a+c=3,即c﹣a=3,故④正确;故选:C.10.【解答】解:∵BC的垂直平分线交AC于点E,交BC于点D,∴CE=BE,∴∠EBC=∠C,故①正确;∵AD=AB,∴∠8=∠ABC=∠6+∠7,∵∠8=∠C+∠4,∴∠C+∠4=∠6+∠7,∴∠4=∠6,∵∠AEF=∠AEB,∴△EAF∽△EBA,故②正确;作AG⊥BD于点G,交BE于点H,∵AD=AB,DE⊥BC,∴∠2=∠3,DG=BG=BD,DE∥AG,∴△CDE∽△CGA,△BGH∽△BDE,DE=AH,∠EDA=∠3,∠5=∠1,∴在△DEF与△AHF中,,∴△DEF≌△AHF(AAS),∴AF=DF,EF=HF=EH,且EH=BH,∴EF:BF=1:3,故③正确;∵∠1=∠2+∠6,且∠4=∠6,∠2=∠3,∴∠5=∠3+∠4,∴∠5≠∠4,故④错误,综上所述:正确的答案有3个,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.【解答】解:sin30°•tan30°+cos60°•tan60°=×+×=.故答案为:.12.【解答】解:y=x2+2x=(x+1)2﹣1,此抛物线的顶点坐标为(﹣1,﹣1),把点(﹣1,﹣1)向左平移2个单位长度,再向下平移3个单位长度后所得对应点的坐标为(﹣3,﹣4),所以平移后得到的抛物线的解析式为y=(x+3)2﹣4.故答案为:y=(x+3)2﹣4.13.【解答】解:由图易知DC=AB=2,CO=AO=3,∠OCD=∠OAB=90°,∵点A在第二象限,∴点D的坐标是(﹣2,3).14.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB==,∴点B经过的路径长==;由图可知,S阴影=S△ADE+S扇形ABD﹣S△ABC,由旋转的性质得,S△ADE=S△ABC,∴S阴影=S扇形ABD==.故答案为:;.15.【解答】解:连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥x轴于点F,如图所示.由直线AB与反比例函数y=﹣的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠EOC=90°,∠EOC+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴==,∵tan∠CAB==3,∴CF=3AE,OF=3OE.又∵AE•OE=|﹣2|=2,CF•OF=|k|,∴k=±18.∵点C在第一象限,∴k=18.故答案为:18.三.解答题(共7小题,满分55分)16.【解答】解:(1)因式分解得(2x﹣1)(2x﹣3)=0于是,得2x﹣1=0或2x﹣3=0,解得x1=,x2=;(2)方程整理,得x2+6x﹣7=0因式分解,得(x+7)(x﹣1)=0于是,得x+7=0或x﹣1=0,解得x1=﹣7,x2=1.17.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵既是轴对称图形又是中心对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有2种情况,∴既是轴对称图形又是中心对称图形的概率为=.18.【解答】解:(1)由题意,设点A的坐标为(1,m),∵点A在正比例函数y=x的图象上,∴m=.∴点A的坐标(1,),∵点A在反比例函数y=的图象上,∴=,解得k=,∴反比例函数的解析式为y=.(2)过点A作AC⊥OB⊥,垂足为点C,可得OC=1,AC=.∵AC⊥OB,∴∠ACO=90°.由勾股定理,得AO=2,∴OC=AO,∴∠OAC=30°,∴∠ACO=60°,∵AB⊥OA,∴∠OAB=90°,∴∠ABO=30°,∴OB=2OA,∴OB=4,∴点B的坐标是(4,0).(3)如图作∠AOB的平分线OM,AB的垂直平分线EF,OM与EF的交点就是所求的点P,∵∠POB=30°,∴可以设点P坐标(m,m),∵PA2=PB2,∴(m﹣1)2+(m﹣)2=(m﹣4)2+(m)2,解得m=3,∴点P的坐标是(3,).19.【解答】解:如图,过点C作CD⊥AB,交AB延长线于点D,设CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即=,解得:x=2+2,答:该雕塑的高度为(2+2)米.20.【解答】解:(1)
本文标题:2018-2019学年济宁市金乡县九年级上期末数学模拟试卷(含答案)
链接地址:https://www.777doc.com/doc-7560111 .html