您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018年南京市中考数学试卷含答案解析
江苏省南京2018年中考数学试卷(解析版)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选中,恰有一项是符合题目要求的)1.(2018年江苏省南京市)的值等于()A.B.﹣C.±D.[来&源:z*zstep.co@~m%]【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.2.(2018年江苏省南京市)计算a3•(a3)2的结果是()A.a8B.a9C.a11D.a18[来%源@#^:中教网&]【分析】根据幂的乘方,即可解答.【解答】解:a3•(a3)2=a9,故选:B.[来~源:中国教&育^出%版网#]【点评】本题考查了幂的乘方,解决本题的关键是熟记幂的乘方公式.3.(2018年江苏省南京市)下列无理数中,与4最接近的是()A.B.C.D.[@^zzst%#ep.com]【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵=4,∴与4最接近的是:.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.[来@源:中教^网#&%]4.(2018年江苏省南京市)某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大[来~@源^:中国教#*育出版网]C.平均数变大,方差变小D.平均数变大,方差变大【分析】分别计算出原数据和新数据的平均数和方差即可得.【解答】解:原数据的平均数为=188,则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2]=,新数据的平均数为=187,则新数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(186﹣188)2+(194﹣188)2]=,所以平均数变小,方差变小,故选:A.【点评】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.5.(2018年江苏省南京市)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+cB.b+cC.a﹣b+cD.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.[@#p.c^o%m]6.(2018年江苏省南京市)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()[来*源%:zzs#tep&@.com]A.①②B.①④C.①②④D.①②③④【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.[中国~教%^*育出&版网]【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.[中^国教*~育&%出版网]【点评】本题考查了正方体的截面,注意:正方体的截面的四种情况应熟记.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)7.(2018年江苏省南京市)写出一个数,使这个数的绝对值等于它的相反数:﹣1.【分析】根据绝对值的意义求解.【解答】解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:﹣1[来@源*:中教&%网^]【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.8.(2018年江苏省南京市)习近平同志在党的十九大报告中强调,生态文明建设功在当代,利在千秋.55年来,经过三代人的努力,河北塞罕坝林场有林地面积达到1120000亩.用科学记数法表示1120000是1.12×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1120000=1.12×106,故答案为:1.12×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2018年江苏省南京市)若式子在实数范围内有意义,则x的取值范围是x≥2.[^~.&zzstep.co@m%]【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣2≥0,解得x≥2,故答案为:x≥2.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(2018年江苏省南京市)计算×﹣的结果是.【分析】先利用二次根式的乘法运算,然后化简后合并即可.【解答】解:原式=﹣2=3﹣2=.故答案为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.(2018年江苏省南京市)已知反比例函数y=的图象经过点(﹣3,﹣1),则k=3.[w~ww.z#zs^te%p@.com]【分析】根据反比例函数y=的图象经过点(﹣3,﹣1),可以求得k的值.【解答】解:∵反比例函数y=的图象经过点(﹣3,﹣1),∴﹣1=,[来源:中*国教育出版^网%#~]解得,k=3,故答案为:3.[来源:#*中教^%@网]【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.12.(2018年江苏省南京市)设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1=﹣2,x2=3.【分析】根据根与系数的关系结合x1+x2=1可得出m的值,将其代入原方程,再利用因式分解法解一元二次方程,即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,∴m=1,∴原方程为x2﹣x﹣6=0,即(x+2)(x﹣3)=0,[来%源^#:&中教网@]解得:x1=﹣2,x2=3.故答案为:﹣2;3.【点评】本题考查了根与系数的关系以及因式分解法解一元二次方程,利用根与系数的关系求出m的值是解题的关键.13.(2018年江苏省南京市)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是(1,﹣2).【分析】直接利用关于y轴对称点的性质得出点A'坐标,再利用平移的性质得出答案.【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),[@z^ste%~p.com#]∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故答案为:1,﹣2.【点评】此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.[来#%源@:~中教网^]14.(2018年江苏省南京市)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE=5cm.【分析】直接利用线段垂直平分线的性质得出DE是△ABC的中位线,进而得出答案.【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【点评】此题主要考查了基本作图以及线段垂直平分线的性质,正确得出DE是△ABC的中位线是解题关键.15.(2018年江苏省南京市)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=72°.【分析】过B点作BF∥l1,根据正五边形的性质可得∠ABC的度数,再根据平行线的性质以及等量关系可得∠1﹣∠2的度数.[来#~&*源:中教^网]【解答】解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,[来源:&^中国#教~育出版@网]∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°﹣∠1,∠4=∠2,∴180°﹣∠1+∠2=∠ABC=108°,∴∠1﹣∠2=72°.故答案为:72.【点评】考查了多边形内角与外角,平行线的性质,关键是熟练掌握正五边形的性质,以及添加辅助线.16.(2018年江苏省南京市)如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为4.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OH=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,[来@源:中国教育*出#%版网&]∴四边形OEB′H和四边形EB′CG都是矩形,OE=OH=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,[来*源%:zzs#tep&@.com]∴CF=2CG=4,故答案为:4.【点评】本题主要考查圆的切线的判定与性质,解题的关键是掌握矩形的判定与性质、旋转的性质、切线的性质、垂径定理等知识点.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)[来源:中国教%*育出#^@版网]17.(2018年江苏省南京市)计算(m+2﹣)÷.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=(﹣)÷=•[来源:中国教育出版^@网&*~]=2(m+3)=2m+6.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.18.(2018年江苏省南京市)如图,在数轴上,点A、B分别表示数1、﹣2x+3.[w@ww.zzste*p#.%co&m](1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在B.A.点A的左边B.线段AB上C.点B的右边【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;[来&源~:*zzstep.co@m%](2)根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.[来源@:中%&教*网^]【解答】解:(1)由数轴上的点表示的数右边的总比左边的大,得[中国*教育出%版~网]﹣2x+3>1,解得x<1;(2)由x<1,得﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x
本文标题:2018年南京市中考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7560407 .html