您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 上海徐汇区第四中学2017学年数学总复习-动点问题总结(含答案解析)
动点问题及练习题一.概念:“动点型问题”是指题设图形中存在一个或多个动点二.关键:动中求静.数学思想:分类函数方程数形结合转化三、类型:专题一:建立动点问题的函数解析式1、应用勾股定理建立函数解析式。2、应用比例式建立函数解析式。3、应用求图形面积的方法建立函数关系式。专题二:函数中因动点产生的相似三角形问题1.相似三角形的证明2.相似三角形的性质例题2.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:RtRtABMMCN△∽△;(2)设BMx,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当M点运动到什么位置时RtRtABMAMN△∽△,求此时x的值.DMABCN专题三:以圆为载体的动点问题例题3:如图,已知直角梯形ABCD中,AD∥BC,∠A=90o,∠C=60o,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿A—D—C折线以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以3cm/s的速度向点A运动,如果⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为ts请求出⊙O2与腰CD相切时t的值;练习题1.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值。EDCBAMP2.如图,在梯形ABCD中,354245ADBCADDCABB∥,,,,∠.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(09年济南中考)(1)求BC的长。(2)当MNAB∥时,求t的值.(3)试探究:t为何值时,MNC△为等腰三角形.ADCBMN3.如图,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点它们同时分别从点A、O向B点匀速运动,速度均为1cm/秒,设P、Q移动时间为t(0≤t≤4)(1)求AB的长,过点P做PM⊥OA于M,求出P点的坐标(用t表示)(2)求△OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?(3)当t为何值时,△OPQ为直角三角形?(4)若点P运动速度不变,改变Q的运动速度,使△OPQ为正三角形,求Q点运动的速度和此时t的值yAOMQPBx4..已知,如图,在直角梯形COAB中,CB∥OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒,(1)动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,指出自变量的取值范围,并求出S的最大值(2)动点P从出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标xyOBAPCD5.如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0),(3,4)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥AC,交AC于P,连结MP。已知动点运动了x秒。PNMCBAOyx(1)P点的坐标为(,);(用含x的代数式表示)(2)试求⊿MPA面积的最大值,并求此时x的值。(3)请你探索:当x为何值时,⊿MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果。6.在三角形ABC中,60,24,16OBBAcmBCcm.现有动点P从点A出发,沿射线AB向点B方向运动;动点Q从点C出发,沿射线CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,求:(1)几秒钟后,ΔPBQ的面积是ΔABC的面积的一半?(2)在第(1)问的前提下,P,Q两点之间的距离是多少?7.如图,已知直角坐标系内的梯形AOBC(O为原点),AC∥OB,OC⊥BC,AC,OB的长是关于x的方程x2-(k+2)x+5=0的两个根,且S△AOC:S△BOC=1:5。(1)填空:0C=________,k=________;(2)求经过O,C,B三点的抛物线的另一个交点为D,动点P,Q分别从O,D同时出发,都以每秒1个单位的速度运动,其中点P沿OB由O→B运动,点Q沿DC由D→C运动,过点Q作QM⊥CD交BC于点M,连结PM,设动点运动时间为t秒,请你探索:当t为何值时,△PMB是直角三角形。例题2.,(3)90BAMN°,要使ABMAMN△∽△,必须有AMABMNBM,由(1)知AMABMNMC,BMMC,当点M运动到BC的中点时,ABMAMN△∽△,此时2x.例题4,.解:(1)当B,E,F三点共线时,两点同时停止运动,如图2所示.由题意可知:ED=t,BC=8,FD=2t-4,FC=2t.∵ED∥BC,∴△FED∽△FBC.∴FDEDFCBC.∴2428ttt.解得t=4.∴当t=4时,两点同时停止运动(2)∵ED=t,CF=2t,∴S=S△BCE+S△BCF=12×8×4+12×2t×t=16+t2.即S=16+t2.(0≤t≤4);(3)①若EF=EC时,则点F只能在CD的延长线上,∵EF2=222(24)51616tttt,EC2=222416tt,∴251616tt=216t.∴t=4或t=0(舍去);②若EC=FC时,∵EC2=222416tt,FC2=4t2,∴216t=4t2.∴433t;③若EF=FC时,∵EF2=222(24)51616tttt,FC2=4t2,∴251616tt=4t2.∴t1=1683(舍去),t2=1683.∴当t的值为4,433,1683时,以E,F,C三点为顶点的三角形是等腰三角形;(4)在Rt△BCF和Rt△CED中,∵∠BCD=∠CDE=90°,2BCCFCDED,∴Rt△BCF∽Rt△CED.∴∠BFC=∠CED.∵AD∥BC,∴∠BCE=∠CED.若∠BEC=∠BFC,则∠BEC=∠BCE.即BE=BC.∵BE2=21680tt,∴21680tt=64.∴t1=1683(舍去),t2=1683.∴当t=1683时,∠BEC=∠BFC.1.第(1)问比较简单,就是一个静态问题当点P运动2秒时,AP=2cm,由∠A=60°,知AE=1,PE=3.∴SΔAPE=23第(2)问就是一个动态问题了,题目要求面积与运动时间的函数关系式,这就需要我们根据题目,综合分析,分类讨论.P点从A→B→C一共用了12秒,走了12cm,Q点从A→B用了8秒,B→C用了2秒,所以t的取值范围是0≤t≤10不变量:P、Q点走过的总路程都是12cm,P点的速度不变,所以AP始终为:t+2如当8≤t≤10时,点Q所走的路程AQ=1×8+2(t-8)=2t-8①当0≤t≤6时,点P与点Q都在AB上运动,设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=2t,QF=t23,AP=t+2,AG=1+2t,PG=t233.∴此时两平行线截平行四边形ABCD是一个直角梯形,其面积为(PG+QF)×AG÷2S=2323t.当6≤t≤8时,点P在BC上运动,点Q仍在AB上运动.设PM与DC交于点G,QN与AD交于点F,则AQ=t,AF=2t,DF=4-2t(总量减部分量),QF=t23,AP=t+2,BP=t-6(总量减部分量),CP=AC-AP=12-(t+2)=10-t(总量减部分量),PG=3)10(t,而BD=34,故此时两平行线截平行四边形ABCD的面积为平行四边形的面积减去两个三角形面积S=3343108352tt.当8≤t≤10时,点P和点Q都在BC上运动.设PM与DC交于点G,QN与DC交于点F,则AQ=2t-8,CQ=AC-AQ=12-(2t-8)=20-2t,(难点)QF=(20-2t)3,CP=10-t,PG=3)10(t.∴此时两平行线截平行四边形ABCD的面积为S=31503302332tt.②(附加题)当0≤t≤6时,S的最大值为237;当6≤t≤8时,S的最大值为36;当8≤t≤10时,S的最大值为36;所以当t=8时,S有最大值为36.2.解:(1)如图①,过A、D分别作AKBC于K,DHBC于H,则四边形ADHK是矩形∴3KHAD.在RtABK△中,2sin454242AKAB.2cos454242BKAB在RtCDH△中,由勾股定理得,22543HC∴43310BCBKKHHC(2)如图②,过D作DGAB∥交BC于G点,则四边形ADGB是平行四边形∵MNAB∥∴MNDG∥∴3BGAD∴1037GC由题意知,当M、N运动到t秒时,102CNtCMt,.∵DGMN∥∴NMCDGC∠∠又CC∠∠∴MNCGDC△∽△∴CNCMCDCG即10257tt解得,5017t(3)分三种情况讨论:①当NCMC时,如图③,即102tt∴103t②当MNNC时,如图④,过N作NEMC于E∵90CCDHCNEC∠∠,∴NECDHC△∽△∴NCECDCHC即553tt∴258t(图①)ADCBKH(图②)ADCBGMN③当MNMC时,如图⑤,过M作MFCN于F点.1122FCNCt∵90CCMFCDHC∠∠,∴MFCDHC△∽△∴FCMCHCDC即1102235tt∴6017t综上所述,当103t、258t或6017t时,MNC△为等腰三角形3.(1)由题意知:BD=5,BQ=t,QC=4-t,DP=t,BP=5-t∵PQ⊥BC∴△BPQ∽△BDC∴BCBQBDBP即455tt∴920t当920t时,PQ⊥BC(2)过点P作PM⊥BC,垂足为M∴△BPM∽△BDC∴355PMt)5(53tPM∴tS21)5(53t=815)25(103t∴当52t时,S有最大值158.(3)①当BP=BQ时,tt5,∴25t②当BQ=PQ时,作QE⊥BD,垂足为E,此时,BE=2521tBP∴△BQE∽△BDC∴BDBQBCBE即5425tt∴1325t③当BP=PQ时,作PF⊥BC,垂足为F,此时,BF=221tBQ∴△BPF∽△BDC∴BDBPBCBF即5542tt∴1340t∴14013t,252t,32513t,均使△PBQ为等腰三角形.ADCBMN(图③)(图④)ADCBMNHE(图⑤)ADCBHNMF
本文标题:上海徐汇区第四中学2017学年数学总复习-动点问题总结(含答案解析)
链接地址:https://www.777doc.com/doc-7565270 .html