您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 电子显微镜讲义-XXXX(第1,2节)1
电子显微镜ElectronMicroscope何本桥2011.5自我介绍•何本桥,湖北孝感人,•中科院化学所博士,•韩国培材大学高级访问学者,•测试中心电镜负责人•从事膜结构和性能研究课堂要求和风格•保持仪容整洁•保持课堂纪律性(课堂坚决不能出现手机铃声和接听电话、不准上课吃东西可以喝水、上课时间不得随意走动)•保持课堂交互性(我会随时提问,可以讨论)•保持课堂理论教学与科研实践相结合目录•第一章电子显微镜的基础•第二章透射电子显微镜的结构、原理及应用•第三章电子扫描显微镜原理、应用•第四章原子力显微镜显微镜原理、应用•考试主要参考书•1.电子显微镜原理和应用。朱宜,张存珪,北京大学出版社。•2.电子显微镜基础。•3.电子显微分析,章晓中,清华大学出版社2007.•4.透射电子显微学:材料科学教材(4卷本,英文),清华大学出版社、SpringerPublisher.第一章电子显微镜的基础绪论——材料研究的重要性•材料是社会发展的基石和支柱•新材料是科技发展的先导•材料研发和应用能力体现了国家的竞争力材料科学基础的地位人类社会发展的历史阶段常常用当时主要使用的材料来划分。从古代到现在人类使用材料的历史共经历了七个时代,各时代的开始时间:w石器时代(公元前10万年)w青铜器时代(公元前3000年)w铁器时代(公元前1000年)w水泥时代(公元0年)w钢时代(1800年)w硅时代(1950年)w新材料时代(1990年)青铜兵器性能的提高和兵器标准化制备。指南针的使用(磁性材料)钢铁材料的发展半导体材料、单晶硅、光纤材料有色轻金属合金、复合材料、先进陶瓷材料秦帝国的统一——航海时代的开始——工业革命——信息时代——航空航天——•因为材料的应用获得的益处:聚合物的性能结构依赖性晶体尺寸晶体取向晶体类型压电、热电材料聚偏氟乙烯αβ普通塑料性能可以提高百倍mStackedlamellarstructureinaspheruliteÅCrystalstructurenmFoldedchainspackedinacrystallinelamellaeSpherulite聚合物多层次结构人眼光学显微镜透射电子显微镜扫描电子显微镜扫描探针显微镜0.2mm200nm1nm0.2nmo.1nm0.01nm显微术:光学、电子、扫描探针LMTEMSPMSEM显微术(microscopy):借助于显微镜进行显微技术应用的研究。全国科学技术名词审定委员会审定;ErnstRuska1906-19881986年,鲁斯卡、宾尼和罗雷尔被授予诺贝尔物理学奖.1.显微镜简介第一代显微镜——光学显微镜1830年代后期为M.Schleide和T.Schmann所发明;它使人类“看”到了致病的细菌、微生物和微米级的微小物体,对社会的发展起了巨大的促进作用,至今仍是主要的显微工具.第二代显微镜——电子显微镜20世纪三十年代早期卢斯卡(E.Ruska)等发明了电子显微镜,使人类能”看”到病毒等亚微米的物体,它与光学显微镜一起成了微电子技术的基本工具。1932年电子显微镜RuskaKnoll第三代显微镜——扫描探针显微镜(SPM)也可简称为纳米显微镜。1982年宾尼和罗雷尔发明了扫描隧道显微镜(STM),使人类实现了观察单个原子的原望;1985年宾尼发明了可适用于非导电样品的原子力显微镜(AFM),也具有原子分辨率,与扫描隧道显微镜一起构建了扫描探针显微镜(SPM)系列。扫描隧道显微镜1982年从1830年到1982年150年内,人类眼睛的也从200nm“看”到了0.1nm,提高了2000倍。•2.1几何光学成像及光学显微镜结构回顾•2.1.1几何光学成像•透镜成像的高斯公式•u是物距;•v是像距•f是焦距•2.1.2光学显微镜结构光学显微镜有多种分类方法:1.按使用目镜的数目可分为双目和单目显微镜;2.按图像是否有立体感可分为立体视觉和非立体视觉显微镜;3.按观察对像可分为生物和金相显微镜等;4.按光学原理可分为偏光、相衬和微差干涉对比显微镜等;5.按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;6.按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。你们见过几种光学显微镜?2.1.3光学显微镜成像借助于一个单镜头,放大率总是受到限制。显微镜则由两组透镜组成,每组透镜相当于一个凸透镜。对这物体的一组叫做物镜,对着眼睛的一组叫做目镜。物镜是一个短焦距的凸透镜,其作用是得到放大的物体的实像,目镜则起放大镜的作用,是一个焦距比物镜长的凸透镜,物镜的向成在目镜焦点以内,经过目镜在明视距离附近成一个放大的虚像。u1v1u2v2人眼•2.1.3光学显微镜局限•分辨率定义:•任何显微镜的用途都是将物体“放大”,使物体上的细微部分清晰的显示出来,帮助人们观察用肉眼直接观察看不见的东西。假如物体上两个相距一定距离的点,利用显微镜把它们区分开来。•所能观察到的最小距离,既能分辨的最短距离称为显微镜的分辨率。人眼的分辨率为0.2mm.假如在物镜形成的像中,这两个点未被分开的话,则无论放大多少倍,也不能把它们分开。光学透镜成像的情况见图。表示样品上的两个物点S1、S2经过物镜在像平面形成像s1’、s2’的光路。由于衍射效应的作用,点光源在像平面上得到的并不是一个点,而是一个中心最亮,周围带有明暗相间同心园环的园斑,即Airy斑.即S1、S2成像后在像平面上会产生两个Airy斑S1’、S2’.Airy斑的光强分布特征:84%集中在中央亮斑上,其余由内向外顺次递减,分散在第1、第2…。一般将第一暗环半径定为Airy斑的半径。如果两个物点靠近,相应的两个Airy斑也逐渐重叠.当斑中心间距等于Airy斑半径时,强度峰谷值相差19,人眼可以分辨,即Rayleigh准则Rayleigh准则:当一点光源衍射图样的中央最亮处刚好和另一个点的第一个最暗处重合时,两衍射斑中心强度约为中央的81%,人眼刚可以分辨,这一条件称为Rayleigh准则.•根据光学理论,分辨率可表示为:•d=0.61λ/(nsinα)•d为分辨率;λ为入射光的波长;n为样品与物镜之间介质的折射率;α为半孔径角。•习惯上,N·A表示为nsinα,称为显微镜的数值孔径。•从公式d=0.61λ/(nsinα)可以看出,•波长愈短,孔径角愈大,介质的折射率愈大,则显微镜的分辨本领越高。•••对于光学显微镜,若介质为空气,则n=1,α极限条件下可为90°,则分辨率为•d=0.61λ。•实际上,对于玻璃透镜,最大孔径半角a=70-75°,如果在物镜和试样之间加入松柏油(n=1.515),•此时的分辨率为d=λ/2,•可见,半波长是光学玻璃透镜可分辨本领的理论极限。•而可见光波长为400-700nm,所以光学显微镜的d=200nm.•有效放大倍数=人眼分辨率/仪器分辨率•M=0.2mm/200nm=1000(倍)•由此可推知光学显微镜有效放大倍数为1000倍•问题:1.什么是有效放大倍数?•2.为什么光学显微镜的最大放大倍数设计为1000倍?•光学显微镜的分辨率为200nm,为了进一步提高分辨率,唯一可能是利用短波长的射线,如利用紫外线(200-400nm),分辨率可提高一倍,曾经有人提出用X射线和γ射线作为光源,但在技术上比较困难,至今没有大的进展。当电子束作为“光源”时显微镜的分辨率提高了1000倍。•电子波的波长决定于电子的速度,而电子的速度决定于加速电压,例如,当加速电压为100KV,电子束波长为0.0037nm,它比可见光的波长小于10万倍,但实际分辨率提高只有约1000倍。这是由于电镜像差等造成的。•要想电子束作为光源,用于放大成像,还要解决:•电子束发射、电子束加速、•电子束聚焦、电子束放大、•电子束穿透能力、电子束成像等问题。2.3电子的基本性质电子是英国物理学家汤姆逊(J.J.Thomson)于1897年在研究阴极射线是发现的,它是最早被发现的基本粒子。一般地说,电子是指带有负电的电子,静止质量为9.11×10-31Kg,其电量为1.602×10-19库伦,是电量的最小单位,电子定向运动形成电流,利用电场和磁场可按需要的方式控制电子的运动,正是利用这一性质,人们发明了各种电子仪器,电镜就是其中之一。1924年法国的科学家德布罗意(deBroglie)指出,任何一种快速运动的粒子(这里的快速是指接近光速),都具有类似于光的性质,具有波动性,有一定的波长和频率。其波长与粒子质量和运行速度的关系:λ=h/mv=h/p(2-1)λ:wavelengthoftheelectronp:momentumh:Planck’sconstant,6.67×10-34此时,微观粒子显示出波动性,粒子性不显著;有时显示出粒子性,波动性不显著。如电子衍射时显示出电子的波动性;而电子与电子或其他粒子碰撞时则表现出电子的粒子性。•电子运动速度与电场强度的关系••如果电子在电场V的作用下加速运动,它的动能等于电场对它做的功,即•mv2/2=eV•m,e是电子的质量和电荷•v是电子的速度,•V是加速电压。•所以•v=(2eV/m)1/2(2-2)••由2-1和2-2可得到•(2-3)M0电子的静止质量9.11×10-31KgV是电子的速度,c是光速3.0×108m/s。①若电子速度较低,则其质量和静止质量相近,即m=m0,则,②若加速电压很高,使电子具有极高速度,则经过相对论修正,有在加速电压为V的电场作用下,一个静止的电子所获得的动能等于电子的总能量mc2与静止能量m0c2之差,即eV=mc2-m0c2将上两式合并,在结合德布罗意公式可得综上所述:1.提高加速电压,缩短电子波长,提高电镜分辨率;2.加速电压越高,对试样的穿透能力越大,可放宽对样品的减薄要求。3.如用更厚样品,更接近样品实际情况。4.电子波长与可见光相比,相差105量级。•2.2磁透镜的工作原理•可见光用玻璃透镜聚焦。•电子束在旋转对称的静电场或磁场中可起到聚焦的作用。电子束的聚焦装置是电子透镜。相应的分为:静电透镜和磁透镜。静电透镜中强的静电场往往导致镜体中发生电击穿和弧光放电,因而目前电镜中很少使用。•1.电磁透镜的聚焦原理•透射电子显微镜中用磁场来使电子波聚焦成像的装置是电磁透镜。电磁透镜实质是一个通电的短线圈,它能造成一种轴对称的分布磁场。正电荷在磁场中运动时,受到磁场的作用力,即洛仑磁力。对正电荷在磁场中运动时受到磁场的作用力为:式中,q-运动正电荷v-正电荷运动速度B-正电荷所在位置磁感应强度,与磁场强度H的关系:B=HF力的方向垂直于电荷运动速度和磁感应强度所决定的平面,按矢量叉积V×B的右手法则来确定。对电子而言,其带负电荷,F方向由B×V决定,其运动方式有如下几种情形:1.V//B,Fe=0,电子在磁场中不受磁场力,运动速度大小和方向不变;2.V┴B,Fe=Fmax,电子在与磁场垂直的平面内作匀速圆周运动;3.V与B成θ角,电子在磁场内作螺旋运动;4.在轴对称的磁场中,电子在磁场内作螺旋近轴运动。1.V//B,Fe=0,电子在磁场中不受磁场力,运动速度大小和方向不变;2.V┴B,Fe=Fmax,电子在与磁场垂直的平面内作匀速圆周运动;在此种情况下,电子所收到的Lorenz力为F=ev0B它的方向是垂直于v0,所以v0数值保持不变,其法线加速度为V02/R=F/m则R=mv0/eB而运动周期为:T=2πR/v0=2πm/eB该公式说明,电子运动周期与电子的初速度无关,也就是说对于从某点初速度不同,周期也是相同。3.V与B成θ角,电子在磁场内作螺旋运动;如果初速度与磁场强度B斜交成θ角,则可以把它分成两个分量V┴=v0sinθvZ=v0cosθ在磁场作用下,垂直于磁场的分量V┴量值保持不变,只是改变运动方向,即在垂直于磁场的方向做匀速圆周运动;但还存在平行于磁场的VZ,在平行于磁场方向作直线运动,所以电子的最终轨迹为一螺旋运动。螺旋的半径R=mv0sinθ/eB螺距为h=Tv0•2.2磁透镜的会聚
本文标题:电子显微镜讲义-XXXX(第1,2节)1
链接地址:https://www.777doc.com/doc-75682 .html