您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 浙江中考数学考点专题复习--专题四《统计与概率》
浙江中考数学考点专题复习--专题四《统计与概率》●中考点击考点分析:内容要求1、数据的收集、整理、描述与分析等统计的意义Ⅰ2、总体、个体、样本,全面调查及抽样抽查,频数、频率等概念Ⅰ3、利用扇形图、条形图、直方图及折线图进行数据整理Ⅱ4、理解概率的意义,会用列举法及频率求概率Ⅱ5、能利用统计与概率知识解决实际生活中的有关问题Ⅱ命题预测:概率是新课程标准下新增的一部分内容,从2004、2005以及2006年课改实验区的中考试题来看,概率在试题中占有一定的比例,一般在10分左右,因此概率已成为近两年及今后中考命题的亮点和热点.在中考命题时,关于概率的考题,多设置为现实生活中的情境问题,要求学生能分清现实生活中的随机事件,并能利用画树状图及列表的方法计算一些简单事件发生的概率.因此学生在复习时要多接触现实生活,多作实验,留心身边的每一件事,把实际问题与理论知识结合到一块来考虑问题.预测2007年将进一步考查在具体情况中求简单事件发生的概率以及运用概率的知识对一些现象作出合理的解释.●难点透视例1六个学生进行投篮比赛,投进的个数分别为2、3、5、13、3、10,这六个数的中位数为()A.3B.4C.5D.6【考点要求】本题考查统计的基本概念中位数的意义.【思路点拔】中位数是把数据按一定顺序排列后位于中间位置的一个数或两个数的平均数,本题共6个数据,按从小到大顺序排列后,中间位置的两个数是第3、4个,分别是3和5,它们的平均数为4,所以中位数是4.【答案】选B.【错解剖析】不能正确理解中位数的意义,简单的理解成中间位置上的一个数或两个数的平均数.突破方法:判断中位数时,必须先按一定顺序排列.解题关键:要看清一组数据是否按一定顺序排列.例2如图4-1是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多【考点要求】本题考查扇形统计图的意义.【思路点拔】因为扇形统计图中的数据只能反映各组数据所占的百分比的大小,题目中并没有提供支出的总费用,所以不能确定全年食品支出的具体大小.【答案】选D.【错解分析】部分学生简单地从所占百分比进行比较判断.突破方法:具体费用的多少,必须用总费用乘各项支出的百分比.解题关键:扇形图中各项的百分比表示各组数据所占的比例大小,但不能表示具体的数值.其他衣着食品教育其他教育食品衣着乙甲24%19%23%34%21%23%25%31%图4-1舟山嘉兴宁波湖州绍兴杭州台州%图1图4-2图2例3“长三角”16个城市中浙江省有7个城市.图4-2中,图1、图2分别表示2004年这7个城市GDP(国民生产总值)的总量和增长速度.则下列对嘉兴经济的评价,错误..的是A.GDP总量列第五位B.GDP总量超过平均值C.经济增长速度列第二位D.经济增长速度超过平均值【考点要求】本题考查条形统计知识,要求能根据统计分析相关数据,得出信息.【思路点拔】由条形图1可知,嘉兴GDP总量在杭州、宁波、绍兴、台州之后,位列第5,而由条形图2可知GDP增长速度位于舟山之后,列第2;由图1,可算得GDP总量平均值为1301.6亿元,由条形图2可算得增长速度平均值为15.5%.【答案】选B.【方法点拨】本题以计算为主.突破方法:要做出正确选择,必须求出两个条形图中提供信息的平均值.例4一位卖“运动鞋”的经销商到一所学校对9位学生的鞋号进行了抽样调查.其号码为:24、22、21、24、23、20、24、23、24.经销商最感兴趣的是这组数据中的()A.中位数B.众数C.平均数D.方差【考点要求】本题考查统计知识在生活中的应用.【思路点拔】因为经销商所关心的是哪种号码的鞋最好销售,也就是各种号码中卖出最多的.【答案】选B.【规律总结】本题是一道联系生活实际的问题.突破方法:销售商最想知道的是哪种号码的鞋最好卖,能反应出这一点的是众数.例5甲、乙、丙三台机床生产直径为60mm的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm,它们的方差依次为S2甲=0.162,S2乙=0.058,S2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是____机床.【考点要求】本题考查方差的有关知识,方差越小,说明数据波动越小,比较稳定.【思路点拔】因为S2乙<S2丙<S2甲,所以乙机床生产的螺丝质量比较稳定.【答案】填乙.【错解剖析】不能正确理解方差与波动之间的关系.突破方法:正确理解方差越大,波动越大,说明数据越不稳定.例6以下说法合理的是()A、小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B、抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖.、在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51.【考点要求】本题考查对概率意义的理解.【思路点拔】A项中实验次太少;B项应该是经过大量实验平均每6次有一次掷得6;C不一定,彩票数量很大,这100张中可能一张也不会中奖,也可能不止一张中奖;D项两组概率接近0.5,所以正确.【答案】选D.【错解剖析】容易错选B,主要是由于未能正确理解概率的意义,必须是在大量试验的前提下,平均每6次就有1次.例7如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大.【考点要求】本题考查利用概率判断规则的公平性.【思路点拔】两枚硬币抛掷的所有可能结果是:正正、正反、反正、反反,其中两个正面的概率是P(两个正面)=14,所以甲的积分为:34×1=34,乙的积分为:14×1=14.因此甲获胜可能性更大.【答案】填甲.【错解剖析】部分学生易错误的认为其它他结果为一正一反即正反与反正,从而把甲得分概率错求为12.突破方法:两个正面之外的其他结果包括一正一反、反反.解题关键:用列举法把各种结果全部表示出来.例8用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则应设个白球,个红球,个黄球.【考点要求】本题考查概率实验中小球数目的确定.【思路点拔】因为一共有6个球,需满足条件:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则白球有6×12=3个,红球有6×13=2个,黄球有6×16=1个.【答案】填3,2,1.【错解剖析】部分学生容易忽视总共是6个球,而只考虑三种颜色球之比为3:2:1.例9在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小华记录了她预测时1分钟跳的次数分别为145,156,143,163,166,则他在该次预测中达标的概率是【考点要求】本题主要考查计算简单事件发生的概率.【思路点拔】这个事件的所有可能出现的结果有5种,其中达标的结果有2种,所以他达标的概率是25.【答案】25【方法点拔】由预测的达标概率来估计中考达标原概率.例10我市部分学生参加了2005年全国初中数学竞赛决赛,并取得优异成绩.已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:分数段0-1920-3940-5960-7980-99100-119120-140人数0376895563212请根据以上信息解答下列问题:(1)全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?(2)经竞赛组委会评定,竞赛成绩在60分以上(含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3)决赛成绩分数的中位数落在哪个分数段内?(4)上表还提供了其他信息,例如:“没获奖的人数为105人”等等.请你再写出两条此表提供的信息.【考点要求】本题考查利用统计知识对所给数据进行分析,并解决相关问题.【思路点拔】(1)全市共有300名学生参加本次竞赛决赛,最低分在20-39之间,最高分在120-140之间(2)本次决赛共有195人获奖,获奖率为65%.(3)决赛成绩的中位数落在60—79分数段内.(4)如“120分以上有12人;60至79分数段的人数最多;……”等.【答案】(1)最低分在20-39之间,最高分在120-140之间;(2)获奖率为65%;(3)60至79分;(4)120分以上有12人;60至79分数段的人数最多.【方法点拔】从问题出发,对表格中的数据进行分析,找出对解题有用的信息.例11市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.701.651.681.691.721.731.681.67乙:1.601.731.721.611.621.711.701.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测,跳过1.65m就很可能获得冠军,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m才能得冠军呢?【考点要求】本题考查平均数、方差等知识,并能利用方差判断成绩的稳定性,从而帮助作出决策的实际应用问题.【思路点拔】(1)1.691.68xx乙甲(2)20.0006s甲20.0035s乙故甲稳定(3)可能选甲参加,因为甲8次成绩都跳过1.65m而乙有3次低于1.65m;也可能选乙参加,因为甲仅3次超过1.70m.(答案不唯一,言之有据即可)【答案】(1);(2)甲稳定;(3)答案不唯一,言之有据即可【方法点拔】回答第(3)问时,并无固定答案,从不同角度可做出不同回答.例12如图所示,A、B两个旅游点从2002年至2006年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?【考点要求】本题考查从折线图中获取信息,并结合信息加以评价,解决相关问题.(1)B旅游点的旅游人数相对上一年增长最快的是2005年.(2)AX=554321=3(万元),BX=534233=3(万元)2AS=51[(-2)2+(-1)2+02+12+22]=2,2BS=51[02+02+(-1)2+1+02]=52从2002至2006年,A、B两个旅游点平均每年的旅游人数均为3万人,但A旅游点较B旅游点的旅游人数波动大.(3)由题意,得5-100x≤4解得x≥100100-80=20【答案】(1)2005年;(2)从2002至2006年,A、B两个旅游点平均每年的旅游人数均为3万人,但A旅游点较B旅游点的旅游人数波动大;(3)至少要提高20元.【方法点拔】完成第(3)问时要先确定票价与游客人数的函数关系,然后根据题目要求列出不等式,求出相应的票价,再计算出票价提高多少.例13小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图4-5),蒙上眼在一定距离外向圈内掷小石子,
本文标题:浙江中考数学考点专题复习--专题四《统计与概率》
链接地址:https://www.777doc.com/doc-7640430 .html