您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2016年上海市高考理科数学试题及答案
2016年普通高等学校招生全国统一考试上海数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设xR,则不等式13x的解集为______________________2、设iiZ23,期中i为虚数单位,则Imz=______________________3、已知平行直线012:,012:21yxlyxl,则21,ll的距离_______________4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)5、已知点(3,9)在函数xaxf1)(的图像上,则________)()(1xfxf的反函数6、如图,在正四棱柱1111DCBAABCD中,底面ABCD的边长为3,1BD与底面所成角的大小为32arctan,则该正四棱柱的高等于____________7、方程3sin1cos2xx在区间2,0上的解为___________学.科.网8、在nxx23的二项式中,所有项的二项式系数之和为256,则常数项等于_________9、已知ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于_________10、设.0,0ba若关于,xy的方程组11axyxby无解,则ba的取值范围是____________11.无穷数列na由k个不同的数组成,nS为na的前n项和.若对任意Nn,3,2nS,则k的最大值为.12.在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线21xy上一个动点,则BABP的取值范围是.13.设2,0,,cRba,若对任意实数x都有cbxaxsin33sin2,则满足条件的有序实数组cba,,的组数为.14.如图,在平面直角坐标系xOy中,O为正八边形821AAA的中心,0,11A.任取不同的两点jiAA,,点P满足0jiOAOAOP,则点P落在第一象限的概率是.二、选择题(5×4=20)15.设Ra,则“1a”是“12a”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分也非必要条件16.下列极坐标方程中,对应的曲线为右图的是()(A)cos56(B)ins56(C)cos56(D)ins5617.已知无穷等比数列na的公比为q,前n项和为nS,且SSnnlim.下列条件中,使得NnSSn2恒成立的是()(A)7.06.0,01qa(B)6.07.0,01qa(C)8.07.0,01qa(D)7.08.0,01qa18、设()fx、()gx、()hx是定义域为R的三个函数,对于命题:①若()()fxgx、()()fxhx、()()gxhx均为增函数,则()fx、()gx、()hx中至少有一个增函数;②若()()fxgx、()()fxhx、()()gxhx均是以T为周期的函数,则()fx、()gx、()hx均是以T为周期的函数,下列判断正确的是()A、①和②均为真命题B、①和②均为假命题C、①为真命题,②为假命题D、①为假命题,②为真命题学科.网三、解答题(74分)19.将边长为1的正方形11AAOO(及其内部)绕的1OO旋转一周形成圆柱,如图,AC长为23,11AB长为3,其中1B与C在平面11AAOO的同侧。(1)求三棱锥111COAB的体积;学.科网(2)求异面直线1BC与1AA所成的角的大小。OC1AA1B1O20、(本题满分14)有一块正方形菜地EFGH,EH所在直线是一条小河,收货的蔬菜可送到F点或河边运走。于是,菜地分为两个区域1S和2S,其中1S中的蔬菜运到河边较近,2S中的蔬菜运到F点较近,而菜地内1S和2S的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程(2)菜农从蔬菜运量估计出1S面积是2S面积的两倍,由此得到1S面积的“经验值”为38。设M是C上纵坐标为1的点,请计算以EH为一边、另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于1S面积的经验值21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)yxbb的左、右焦点分别为12FF、,直线l过2F且与双曲线交于AB、两点。(1)若l的倾斜角为2,1FAB是等边三角形,求双曲线的渐近线方程;(2)设3b,若l的斜率存在,且11()0FAFBAB,求l的斜率.学科&网22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知aR,函数21()log()fxax.(1)当5a时,解不等式()0fx;(2)若关于x的方程2()log[(4)25]0fxaxa的解集中恰好有一个元素,求a的取值范围;(3)设0a,若对任意1[,1]2t,函数()fx在区间[,1]tt上的最大值与最小值的差不超过1,求a的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}na满足:只要*(,)pqaapqN,必有11pqaa,则称{}na具有性质P.(1)若{}na具有性质P,且12451,2,3,2aaaa,67821aaa,求3a;(2)若无穷数列{}nb是等差数列,无穷数列{}nc是公比为正数的等比数列,151bc,5181bc,nnnabc判断{}na是否具有性质P,并说明理由;(3)设{}nb是无穷数列,已知*1sin()nnnabanN.求证:“对任意1,{}naa都具有性质P”的充要条件为“{}nb是常数列”.参考答案1.)4,2(2.33.5524.76.15.2log(x1)6.227.566或8.1129.33710.2+(,)11.412.[0,12]13.414.52815.A16.D17.B18.D19.(1)由题意可知,圆柱的高1h,底面半径1r.由11的长为3,可知1113.111111111113sin24S,111111C13V312Sh.(2)设过点1的母线与下底面交于点,则11//,所以1C或其补角为直线1C与1所成的角.由C长为23,可知2C3,又1113,所以C3,从而C为等边三角形,得C1.因为1平面C,所以1C.在1C中,因为1C2,C1,11,所以1C4,从而直线1C与1所成的角的大小为4.20.(1)因为C上的点到直线与到点F的距离相等,所以C是以F为焦点、以为准线的抛物线在正方形FG内的部分,其方程为24yx(02y).(2)依题意,点的坐标为1,14.所求的矩形面积为52,而所求的五边形面积为114.矩形面积与“经验值”之差的绝对值为581236,而五边形面积与“经验值”之差的绝对值为11814312,所以五边形面积更接近于1S面积的“经验值”.考点:1.抛物线的定义及其标准方程;2.面积.21(1)设,xy.由题意,2F,0c,21cb,22241ybcb,因为1F是等边三角形,所以23cy,即24413bb,解得22b.故双曲线的渐近线方程为2yx.(2)由已知,1F2,0,2F2,0.设11,xy,22,xy,直线:l2ykx.显然0k.由22132yxykx,得222234430kxkxk.因为l与双曲线交于两点,所以230k,且23610k.设的中点为,xy.由11FF0即1F0,知1F,故1F1kk.而2122223xxkxk,2623kykxk,1F2323kkk,所以23123kkk,得235k,故l的斜率为155.22.解:(1)由21log50x,得151x,解得1,0,4x.(2)1425aaxax,24510axax,当4a时,1x,经检验,满足题意.当3a时,121xx,经检验,满足题意.当3a且4a时,114xa,21x,12xx.1x是原方程的解当且仅当110ax,即2a;2x是原方程的解当且仅当210ax,即1a.于是满足题意的1,2a.综上,a的取值范围为1,23,4.(3)当120xx时,1211aaxx,221211loglogaaxx,所以fx在0,上单调递减.函数fx在区间,1tt上的最大值与最小值分别为ft,1ft.22111loglog11ftftaatt即2110atat,对任意1,12t成立.因为0a,所以函数211yatat在区间1,12上单调递增,12t时,y有最小值3142a,由31042a,得23a.故a的取值范围为2,3.23.解析:(1)因为52aa,所以63aa,743aa,852aa.于是678332aaaa,又因为67821aaa,解得316a.(2)nb的公差为20,nc的公比为13,所以12012019nbnn,1518133nnnc.520193nnnnabcn.1582aa,但248a,63043a,26aa,所以na不具有性质.(3)[证]充分性:当nb为常数列时,11sinnnaba.对任意给定的1a,只要pqaa,则由11sinsinpqbaba,必有11pqaa.充分性得证.必要性:用反证法证明.假设nb不是常数列,则存在k,使得12kbbbb,而1kbb.下面证明存在满足1sinnnnaba的na,使得121kaaa,但21kkaa.设sinfxxxb,取m,使得mb,则0fmmb,0fmmb,故存在c使得0fc.取1ac,因为1sinnnaba(1nk),所以21sinabcca,依此类推,得121kaaac.但2111sinsinsinkkkkababcbc,即21kkaa.所以na不具有性质,矛盾.必要性得证.综上,“对任意1a,na都具有性质”的充要条件为“nb是常数列”.
本文标题:2016年上海市高考理科数学试题及答案
链接地址:https://www.777doc.com/doc-7696583 .html