您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 考研数学概率之随机变量及其分布解析
凯程考研集训营,为学生引路,为学员服务!考研数学概率之随机变量及其分布解析考研将第一时间整理发布考研相关信息,希望对2016考研考生有所帮助。2015年考研复习已经进入了最重要的暑期强化复习阶段,考研数学不管是对文科生还是理科生来说,都是值得重视的的问题,考研老师提醒大家,复习固然是考研中很重要的一环,但是考研信息战也已经打响,在我们专注于考研复习的同时千万不要忽略掉考研相关信息资料的发布。一、考试内容1.随机变量2.随机变量分布函数的概念及其性质3.离散型随机变量的概率分布4.连续型随机变量的概率密度5.常见随机变量的分布6.随机变量函数的分布二、考试要求1.理解随机变量的概念,理解分布函数的概念及其性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布。三、复习要点1.分布函数首先要理解分布函数的概念,分布函数表示随机变量位于一点左侧区间的概率。分布函数的定义,在考试中用得比较多,如直接利用分布函数的定义去计算分布函数,连续型随机变量函数求概率密度或者分布函数等。其次,要理解分布函数的性质,包括:一、分布函数的充分必要条件,充要条件中涉及到的三条是判断一个函数能否作为某随机变量分布函数的依据。这个考点,在考研试题的选择题中也常有考查,所以需要考生引起足够的重视。二、通过分布函数去计算概率的一系列公式。关于这些公式,大部分都可以通过分布函数的定义去推导,希望考生在前期学习的时候,可以自己动笔去推导一遍。其实,这个推导的过程,也是进一步理解随机变量分布函数定义的过程。在理解了分布函数概率和常用性质的基础上,建议考生再做一些与该知识点有关的配套练习,再次强化一下这一部分的考点。2.分布律离散型随机变量的核心就是考察随机变量的分布律,这点凡是涉及到离散型随机变量,不论维数是几维,考查的核心点都是一样的。分布律的写法关键是掌握两个要点。一、随机变量的所有可能取值有哪些,关于这点更多的会与实际问题相结合,考生需要去理解题目中的文字信息,判断随机变量的可能取值。一般来说,列出随机变量所有取值的难度较低,大部分考生可以写出,切勿粗心大意落掉某些取值。二、随机变量取对应值的概率,应该说第二点是写出分布律的重难点。如果题目的背景是与实际问题相结合的,那计算概率的时候一凯程考研集训营,为学生引路,为学员服务!般会用到第一章学过的简单的古典概型的知识,当然也有部分题目,写分布律与实际问题并未结合,那这种题型相对而言就会变得比较简单。另外,关于分布律这一部分的考点,也有个别题目在考查分布律的充分必要条件,那此类题目的难度就更小了。3.连续型随机变量首先需要考生搞清楚的是概率密度这个概念,很多考生在头脑中百思不得其解的是概率密度究竟表示什么意思?其实,简单的说概率密度表示是随机变量落在单位区间段内的概率。对于概率密度的这个概念作为了解即可,即使不理解对考生做题也没有太大的影响。其次,是概率密度的充要条件,这个是考试常考的一个考点。跟分布函数的充要条件考法类似,在这块也常会考查,下列哪些函数可以作为随机变量的概率密度这样的选择题。另外,是一些小的知识点,如连续型随机变量的分布函数是连续的,连续型随机变量分布函数和概率密度之间的关系,连续型随机变量通过概率密度可以计算随机变量落在某区间内的概率等。四、备考建议同学们一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。在复习过程中,可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。在这里,推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。加油!
本文标题:考研数学概率之随机变量及其分布解析
链接地址:https://www.777doc.com/doc-7708977 .html