您好,欢迎访问三七文档
Gothedistance学案43空间的平行关系导学目标:1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系.自主梳理1.直线a和平面α的位置关系有________、________、__________,其中________与________统称直线在平面外.2.直线和平面平行的判定:(1)定义:直线和平面没有____________,则称直线和平面平行.(2)判定定理:a⊄α,b⊂α,且a∥b⇒________;(3)其他判定方法:α∥β,a⊂α⇒________.3.直线和平面平行的性质定理:a∥α,a⊂β,α∩β=l⇒________.4.两个平面的位置关系有________、________.5.两个平面平行的判定:(1)定义:两个平面没有________,称这两个平面平行;(2)判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α;(3)推论:a∩b=P,a,b⊂α,a′∩b′=P′,a′,b′⊂β,a∥a′,b∥b′⇒________.6.两个平面平行的性质定理:α∥β,a⊂α⇒________;α∥β,γ∩α=a,γ∩β=b⇒________.7.与垂直相关的平行的判定:(1)a⊥α,b⊥α⇒________;(2)a⊥α,a⊥β⇒________.自我检测1.(2011·湖南四县调研)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,a∥β,b⊂β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α2.(2011·烟台模拟)一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α3.下列各命题中:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;④垂直于同一直线的两个平面平行.不正确的命题个数是()A.1B.2C.3D.44.经过平面外的两点作该平面的平行平面,可以作()A.0个B.1个C.0个或1个D.1个或2个5.(2011·南京模拟)在四面体ABCD中,M、N分别是△ACD、△BCD的重心,则四面体的四个面中与MN平行的是________________.Gothedistance探究点一线面平行的判定例1已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ.求证:PQ∥平面CBE.变式迁移1(2011·长沙调研)在四棱锥P—ABCD中,四边形ABCD是平行四边形,M、N分别是AB、PC的中点,求证:MN∥平面PAD.探究点二面面平行的判定例2在正方体ABCD—A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP∥平面A1BD.变式迁移2已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.(1)求证:平面G1G2G3∥平面ABC;(2)求S△G1G2G3∶S△ABC.Gothedistance探究点三平行中的探索性问题例3(2011·惠州月考)如图所示,在四棱锥P—ABCD中,CD∥AB,AD⊥AB,AD=DC=12AB,BC⊥PC.(1)求证:PA⊥BC;(2)试在线段PB上找一点M,使CM∥平面PAD,并说明理由.变式迁移3如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?转化与化归思想综合应用例(12分)一个多面体的三视图和直观图如图所示,其中M、N分别是AB、SC的中点,P是SD上的一动点.Gothedistance(1)求证:BP⊥AC;(2)当点P落在什么位置时,AP∥平面SMC?(3)求三棱锥B—NMC的体积.多角度审题第(1)问的关键是根据三视图得到SD⊥平面ABCD,第(2)问是一个开放型问题,可有两种思维方式:一是猜想P是SD的中点,二是从结论“AP平行于平面SMC”出发找P满足的条件.【答题模板】(1)证明连接BD,∵ABCD为正方形,∴BD⊥AC,又SD⊥底面ABCD,∴SD⊥AC,∵BD∩SD=D,∴AC⊥平面SDB,∵BP⊂平面SDB,∴AC⊥BP,即BP⊥AC.[4分](2)解取SD的中点P,连接PN,AP,MN.则PN∥DC且PN=12DC.[6分]∵底面ABCD为正方形,∴AM∥DC且AM=12DC,∴四边形AMNP为平行四边形,∴AP∥MN.又AP⊄平面SMC,MN⊂平面SMC,∴AP∥平面SMC.[8分](3)解VB—NMC=VN—MBC=13S△MBC·12SD=13·12·BC·MB·12SD=16×1×12×12×2=112.[12分]【突破思维障碍】1.本题综合考查三视图、体积计算及线面平行、垂直等位置关系,首先要根据三视图想象直观图,尤其是其中的平行、垂直及长度关系,第(1)问的关键是根据三视图得到SD⊥平面ABCD,第(2)问是一个开放型问题,开放型问题能充分考查学生的思维能力和创新精神,近年来在高考试题中频繁出现这类题目.结合空间平行关系,利用平行的性质,设计开放型试题是新课标高考命题的一个动向.2.线线平行与线面平行之间的转化体现了化归的思想方法.1.直线与平面平行的重要判定方法:(1)定义法;(2)判定定理;(3)面与面平行的性质定理.2.平面与平面平行的重要判定方法:(1)定义法;(2)判定定理;(3)利用结论:a⊥α,a⊥β⇒α∥β.3.线线平行、线面平行、面面平行间的相互转化:Gothedistance(满分:75分)一、选择题(每小题5分,共25分)1.(2011·开封月考)下列命题中真命题的个数为()①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.A.1B.2C.3D.42.已知直线a、b、c和平面m,则直线a∥直线b的一个必要不充分的条件是()A.a⊥m且b⊥mB.a∥m且b∥mC.a∥c且b∥cD.a,b与m所成的角相等3.在空间中,下列命题正确的是()A.若a∥α,b∥a,则b∥αB.若a∥α,b∥α,a⊂β,b⊂β,则β∥αC.若α∥β,b∥α,则b∥βD.若α∥β,a⊂α,则a∥β4.设l1、l2是两条直线,α、β是两个平面,A为一点,有下列四个命题,其中正确命题的个数是()①若l1⊂α,l2∩α=A,则l1与l2必为异面直线;②若l1∥α,l2∥l1,则l2∥α;③若l1⊂α,l2⊂β,l1∥β,l2∥α,则α∥β;④若α⊥β,l1⊂α,则l1⊥β.A.0B.1C.2D.35.若直线a,b为异面直线,则分别经过直线a,b的平面中,相互平行的有()A.1对B.2对C.无数对D.1或2对二、填空题(每小题4分,共12分)6.(2011·秦皇岛月考)下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是________(写出所有符合要求的图形序号).,7.(2011·大连模拟)过三棱柱ABC—A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的有______条.8.如图所示,ABCD—A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,GothedistanceB1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.三、解答题(共38分)9.(12分)如图所示,在三棱柱ABC—A1B1C1中,M、N分别是BC和A1B1的中点.求证:MN∥平面AA1C1C.10.(12分)(2010·湖南改编)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.11.(14分)(2011·济宁模拟)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE,且点F在CE上.(1)求证:AE⊥BE;(2)求三棱锥D—AEC的体积;Gothedistance(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.学案43空间的平行关系自主梳理1.平行相交在平面内平行相交2.(1)公共点(2)a∥α(3)a∥β3.a∥l4.平行相交5.(1)公共点(3)α∥β6.a∥βa∥b7.(1)a∥b(2)α∥β自我检测1.D2.D3.A4.C5.面ABC和面ABD课堂活动区例1解题导引证明线面平行问题一般可考虑证线线平行或证面面平行,要充分利用线线平行、线面平行、面面平行的相互转化.证明如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN.∵矩形ABCD和矩形ABEF全等且有公共边AB,∴AE=BD.又∵AP=DQ,∴PE=QB,又∵PM∥AB∥QN,∴PMAB=EPEA,QNDC=BQBD,∴PMAB=QNDC.∴PM綊QN,∴四边形PQNM为平行四边形,∴PQ∥MN又MN⊂平面BCE,PQ⊄平面BCE,∴PQ∥平面BCE.变式迁移1证明取PD中点F,连接AF、NF、NM.∵M、N分别为AB、PC的中点,∴NF綊12CD,AM綊12CD,∴AM綊NF.∴四边形AMNF为平行四边形,∴MN∥AF.又AF⊂平面PAD,MN⊄平面PAD,∴MN∥平面PAD.例2解题导引面面平行的常用判断方法有:(1)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么Gothedistance这两个平面平行;(2)利用垂直于同一条直线的两个平面平行;关键是利用“线线平行”、“线面平行”、“面面平行”的相互转化.证明方法一如图所示,连接B1D1、B1C.∵P、N分别是D1C1、B1C1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN⊄面A1BD,∴PN∥平面A1BD.同理MN∥平面A1BD.又PN∩MN=N,∴平面MNP∥平面A1BD.方法二如图所示,连接AC1、AC.∵ABCD—A1B1C1D1为正方体,∴AC⊥BD.又CC1⊥面ABCD,BD⊂面ABCD,∴CC1⊥BD,∴BD⊥面ACC1,又∵AC1⊂面ACC1,∴AC1⊥BD.同理可证AC1⊥A1B,∴AC1⊥平面A1BD.同理可证AC1⊥平面PMN,∴平面PMN∥平面A1BD.变式迁移2(1)证明如图所示,连接PG1、PG2、PG3并延长分别与边AB、BC、AC交于点D、E、F,连接DE、EF、FD,则有PG1∶PD=2∶3,PG2∶PE=2∶3,∴G1G2∥DE.又G1G2不在平面ABC内,DE在平面ABC内,∴G1G2∥平面ABC.同理G2G3∥平面ABC.又因为G1G2∩G2G3=G2,Gothedistance∴平面G1G2G3∥平面ABC.(2)解由(1)知PG1PD=PG2PE=23,∴G1G2=23DE.又DE=12AC,∴G1G2=13AC.同理G2G3=13AB,G1G3=13BC.∴△G1G2G3∽△CAB,其相似比为1∶3,∴S△G1G2G3∶S△ABC=1∶9.例3解题导引近几年探索性问题在高考中时有出现,解答此类问题时先以特殊位置尝试探究,找到符合要求的点后再给出严格证明.(1)证明连接AC,过点C作CE⊥AB,垂足为E.在四边形ABCD中,AD⊥AB,CD∥AB,AD=DC,∴四边形ADCE为正方形.∴∠ACD=∠ACE=45°.∵AE=CD=12AB,∴BE=AE=CE.∴∠BCE=45°.∴∠ACB=∠ACE+∠BCE=45°+45°=90°.∴AC⊥BC.又∵BC⊥PC,AC⊂平面
本文标题:空间的平行关系
链接地址:https://www.777doc.com/doc-7731604 .html