您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 资阳市2005—2006学年度高中二年级第一学期期末质量检测文科数学
资阳市2005—2006学年度高中二年级第一学期期末质量检测文科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共150分,考试时间为120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束时,将本试卷和答题卡一并收回.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线x=-2y2的准线方程是().A.21yB.21yC.81xD.81x2.已知过点A(-2,m)和B(m,4)的直线的斜率为-2,则m的值为().A.10B.2C.0D.-83.不等式21xx≤0的解集是().A.{x│x≤2}B.{x│1<x≤2=C.{x│1≤x≤2}D.{x│1≤x<2=4.圆22(1)1xy的圆心到直线33yx的距离是().A.12B.32C.1D.35.若a、b、c、d∈R,且,abcd,则下列命题正确的是().A.ac>bdB.abdcC.acbdD.acbd6.若直线l的斜率k满足1≤k≤3,则直线l的倾斜角的取值范围是().A.[0,]3B.[,]43C.[,]4323[,]34D.2[,)(,]42237.过点(1,2)且与直线x+2y=0垂直的直线的方程为().A.y=2x-3B.y=2xC.y=-12x+52D.y=-12x+28.曲线y=31x3-x2+5在x=1处的切线的斜率是().A.x2-2xB.0C.1D.-19.若A是定直线l外的一定点,则过A且与l相切圆的圆心轨迹是().A.圆B.椭圆C.抛物线D.双曲线一支10.设1(2)2xaaa,221()(0)2byb,则x、y之间的大小关系是().A.xyB.xyC.xyD.不能确定11.若双曲线222141xymm的焦点在y轴上,则m的取值范围是().A.(-2,2)B.(1,2)C.(-2,-1)D.(-1,2)12.已知椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现有一水平放置的椭圆形台球盘,其长轴长为2a,焦距为2c,若点A,B是它的焦点,当静放在点A的小球(不计大小),从点A沿直线出发,经椭圆壁反弹后再回到点A时,小球经过的路程是().A.4aB.2(a-b)C.2(a+c)D.不能惟一确定资阳市2005—2006学年度高中二年级第一学期期末质量检测文科数学第Ⅱ卷(非选择题共90分)题号二三总分总分人171819202122得分注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共4个小题,每小题4分,共16分.把答案直接填在题中横线上.13.用“”或“”填空:如果0ab1,n∈N*,那么1na______1nb_______1.14.若实数yx,满足条件3,2,xyyx则yxz43的最大值是__________.15.过点(2,0)与圆cos,sinxy相切的直线的条数是__________.16.给出下列四个命题:①两平行直线0123yx和0246yx间的距离是13132;②方程11422tytx不可能表示圆;③若双曲线1422kyx的离心率为e,且21e,则k的取值范围是20,60k;④曲线0992233xyyxyx关于原点对称.其中所有正确命题的序号是_____________.三、解答题:本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分12分)(Ⅰ)比较下列两组实数的大小:①2-1与2-3;②2-3与6-5;(Ⅱ)类比以上结论,你能否得出更一般的结论?证明你的结果.18.(本小题满分12分)已知直线l过点M(0,1),且l被两已知直线l1:x-3y+10=0和l2:2x+y-8=0所截得的线段恰好被M所平分,求直线l方程.19.(本小题满分12分)已知圆C同时满足两个条件:①圆心是直线xy2与052yx的交点;②直线03534yx与圆C相切.求圆C的方程.20.(本小题满分12分)已知抛物线的顶点在原点,它的准线经过双曲线12222byax的左焦点,且与x轴垂直,抛物线与此双曲线交于点(6,23),求抛物线与双曲线的方程.21.(本小题满分12分)解关于x的不等式22()1xaaxa(Ra).22.(本小题满分14分)在△ABC中,已知B(-2,0)、C(2,0),AD⊥BC于点D,△ABC的垂心为H,且13AHHD.(Ⅰ)求点H(x,y)的轨迹G的方程;(Ⅱ)已知P(-1,0)、Q(1,0),M是曲线G上的一点,判断||1MP,||1PQ,||1MQ能否构成等差数列.若能,求出M点的坐标;若不能,请说明理由.资阳市2005—2006学年度高中二年级第一学期期末质量检测数学试题参考答案及评分意见一、选择题:每小题5分,共60分.1-5.DDBAC;6-10.BBDCA;11-12.CD.二、填空题:每小题4分,共16分.13.,;14.11;15.2;16.①,④.三、解答题:每小题5分,共60分.17.(Ⅰ)①(2+3)2-(2+1)2=26-4>0.故2+3>2+1,即2-1>2-3.··········································4分②(2+5)2-(6+3)2=45-218=220-218>0.故2+5>6+3,即2-3>6-5.7分(Ⅱ)一般结论:若n是正整数,则1n-n>3n-2n.······10分证明:与(Ⅰ)类似(从略).································································12分18.过点M与x轴垂直的直线显然不合要求,故可设所求直线方程为y=kx+1,······························································································2分若此直线与两已知直线分别交于A、B两点,则解方程组可得xA=137k,xB=27k.······························································6分由题意137k+27k=0,∴k=-41.10分故所求直线方程为x+4y-4=0.····················································12分另解一:设所求直线方程y=kx+1,代入方程(x-3y+10)(2x+y-8)=0,得(2-5k-3k2)x2+(28k+7)x-49=0.由xA+xB=-2352728kkk=2xM=0,解得k=-41.∴直线方程为x+4y-4=0.另解二:∵点B在直线2x-y-8=0上,故可设B(t,8-2t),由中点公式得A(-t,2t-6).∵点A在直线x-3y+10=0上,∴(-t)-3(2t-6)+10=0,得t=4.∴B(4,0).故直线方程为x+4y-4=0.19.解:由2,250,yxxy得交点(1,2),即所求圆的圆心为)2,1(.·················5分设所求的方程为222)2()1(ryx,············································7分则534|352314|22r,故圆的方程为22(1)(2)25xy.·················································12分20.由题意可知抛物线的焦点到准线间的距离为2C(即双曲线的焦距).设抛物线的方程为24.ycx4分∵抛物线过点2233(,6)641122ccab即①又知2222223()(6)962114abab②8分由①②可得2213,44ab,10分∴所求抛物线的方程为xy42,双曲线的方程为224413xy.··········12分21.原不等可化为2()()0xaxa.3分又)1(2aaaa,故①当0a或1a时,2aa.则2axa;·································6分②当10a时,aa2.则axa2;······································8分③当0a或1a时,不等式为02x或0)1(2x,此时无解.········10分综上:当0a或1a时,2aa.则不等式的解集是}|{2axax;当10a时,aa2.则不等式的解集是}|{2axax;当0a或1a时,不等式等价于02x或0)1(2x,无解.···········································································12分22.(Ⅰ)∵H点坐标为(x,y),则D点坐标为(x,0),由定比分点坐标公式可知,A点的坐标为(x,34y).∴BH=(x+2,y),CA=(x-2,34y).···················································4分由BH⊥CA知x2-4+34y2=0,即42x+32y=1,∴G的方程为42x+32y=1(y≠0).····················································7分(Ⅱ)显然P、Q恰好为G的两个焦点,∴|MP|+|MQ|=4,|PQ|=2.若||1MP,||1PQ,||1MQ成等差数列,则||1MP+||1MQ=||2PQ=1.∴|MP|·|MQ|=|MP|+|MQ|=4.··················································11分由,4||||,4||||MQMPMQMP可得|MP|=|MQ|=2,∴M点为42x+32y=1的短轴端点.∴当M点的坐标为(0,3)或(0,-3)时,||1MP,||1PQ,||1MQ成等差数列.······························································································14分
本文标题:资阳市2005—2006学年度高中二年级第一学期期末质量检测文科数学
链接地址:https://www.777doc.com/doc-7774364 .html