您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 考研数学高等数学强化习题-不定积分
模块五不定积分Ⅰ经典习题一.原函数与不定积分1、设,0(),0xexfxxx,1sin,0()0,0xxgxxx下述命题成立的是()(A)()fx在[1,1]上存在原函数(B)(0)g存在(C)()gx在[1,1]上存在原函数(D)1()()xFxftdt,则(0)F存在2、若()fx的导函数是sinx,则()fx有一个原函数为()(A)1sinx(B)1sinx\(C)1cosx(D)1cosx3、在下列等式中,正确的结果是()(A)dfxdxfxdx(B)fxdxfx(C)dfxfx(D)dfxdxfx4、已知Fx是fx的一个原函数,则xxefedx_____.二.有理函数积分5、计算下列不定积分(1)32211xxdxx(2)222311xdxxx;(3)25613xdxxx(4)2100(1)xdxx(5)21(21)(1)dxxx(6)21(1)dxxx(7)7711xdxxx(8)226114(1)xxdxxx(9)22121dxxxx(10)3222412xxxdxxxx(11)241xdxx(12)2311xdxxx(13)33156xdxxx(14)421dxxx三.可化为有理函数的积分1.三角有理式(6、计算下列不定积分(1)1sinsin1cosxdxxx(2)3sincosdxxx(3)3sin2cosxdxx(4)211cosdxx(5)sin1sinxdxx(6)22221sincosdxaxbx(7)210sincosdxabaxbx(8)12cossindxxx(9)64tancossinxxdxx(10)41sindxx2.指数有理式的积分7、计算下列不定积分.(1)311xxedxe(2)211xdxe(3)1xxdxee(4)211xdxe四.根式的处理8、计算下列不定积分(1)41dxxx(2)4311dxxx(3)3421xxdxx(4)21xedx(5)21321dxxxx(6)29xdxx(7)4211dxxx(8)3221dxxa,9、计算下列不定积分(1)2210dxaxax(2)2123dxxxx(3)22(2)1xdxxx(4)241xdxx(5)11xdxx(6)23111dxxx五.分部积分法的使用10、计算下列不定积分(1)2lnsinsinxdxx(2)2ln1xdxx(3)2sinxxdx(4)22arctan1xxdxx》(5)2ln1xxdxx(6)2arctanxxedxe(7)2arcsinxdx(8)2ln1xdxx11、计算下列不定积分(1)22ln1xxdx(2)2lnxxdx(3)arctanxdx(4)sinxxdx(5)22arctan1xxdxx(6)arcsin1xdxx(7)2cossincosxxxedxx(8)22sectanxxxdxx12、若fx的一个原函数为2lnx,则xfxdx()|(A)2lnlnxxC(B)22lnlnxxC(C)22lnlnxxC(D)2lnlnxxC13、已知sinxx是fx的原函数,求3xfxdx.14、已知曲线()yfx过点1(0,)2,且其上任一点(,)xy处的切线斜率为2ln(1)xx,求()fx.15、求积分sinlnxdx.16、已知fx有二阶连续导数,证明:121212124xxfxdxfxfxC.六.其他考查形式?17、设231,0()1,012,1xfxxxxx求()fxdx.18、设22(sin)cos2tan(01),fxxxx则()___fxⅡ参考答案一.原函数与不定积分1、【答案】:(C)【解析】:()gx在[1,1]上连续,故存在原函数(A)不正确,()fx在点0x处具有跳跃间断点,故在包含此点的区间内不存在原函数2、【答案】:(B)^【解析】:由()fx的导函数是sinx,即()sinfxx,得()()sincosfxfxdxxdxxC,其中C为任意常数.所以()fx的原函数12()()(cos)sinFxfxdxxCdxxCxC,其中12,CC为任意常数.令10C,21C得()1sinFxx.故选(B).3、【答案】:(A)【解析】:由不定积分的概念和性质可知,dfxdxfxdxfx.dx!fxdxdfxfxC,C为常数.dfxdxfxdx.故应选(A).4、【答案】:xFeC【解析】:因为Fx是fx的一个原函数,故Fxfx.令xue,则xxxxxefedxfedefuduFuCFeC.二.有理函数积分5、(1)【答案】:3211ln221xxxCx|【解析】:322223212131111221111ln221xxxxdxxdxxdxxxxxxxxCx(2)【答案】:21513ln1ln1ln+1arctan4422xxxxC(3)【解析】:通过变换,将积分转化为常见积分,即222538613613613xxdxdxdxxxxxxx2221(613)82613(34dxxdxxxx)223(1ln(613)432(1xdxxx)2)2213ln(613)4arctan22xxxC}(4)【解析】:原式=1001111()()()xxdxx99100111()()xdxdxxx98991002111()()()dxdxdxxxx979899111974999()()()xxxC(5)【解析】:设221(21)(1)211ABxCxxxx,计算得421;;555ABC.2222224211211211555(21)(1)2115215151211ln21ln1arctan555xdxdxdxdxdxxxxxxxxxxxC(6)【解析】:22221111111(1)(1)(1)(1)1(1)xxxxxxxxxxxx22221111111ln(1)(1)(1)1(1)11xxxdxdxCxxxxxxxxxxx(7)【解析】:72lnln17xxC((8)【解析】:2226114421(1)1(1)xxxxxxx222611442114ln2ln1(1)1(1)1xxdxdxxxCxxxxxx(9)【解析】:222211211212111ABCDxxxxxxxxxx其中1111;;;31242ABCD.故22222111111312422112121111111ln2ln1ln1312421dxdxxxxxxxxxxxxxxCx(10)【解析】:322222421122xxxABCxDxxxxxxx#其中1;2;0;1ABCD.3222222412121ln22121122xxxdxdxxdxxxxxxxxxxx222112212arctan1331322dxxdxCxxx,故322242221ln2arctan23312xxxxdxxCxxxx(11)【解析】:111lnarctan412xxCx(12)【解析】:221121lnln1ln1arctan3633xxxxxC(13)【答案】:【解析】:(14)【答案】:2211121121lnarctanarctan41233233xxxxCxx|【解析】:42222222111122221111111121121lnarctanarctan41233233xxdxdxdxxxxxxxxxxxxxxxCxx22114321lnarctan8642323xxxCxx33322211111754421565616122111232342241111423ln14282321231224223xxxdxdxxdxxxxxxxxxddxxxdxxx2221114321lnarctan8642323dxxxxCxx6、(1)【解析】:利用万能公式:22212cos,sin,(tan)112ttxxxttt,令2arctanxt,则221dxdtt22222222211sin1111112lnsin1cos2422111111tanlntantan42222txttdxdttdttttCxxtttttxxxC(2)【答案】:21tanlntan2xxC【解析】:先作恒等变形,凑微分得2241tan1tantanlntantancostan2dxxIdxxxCxxx(3)【解析】:231cossincos2cos2cosxxdxdxxx,令costx,故。322222sin1143322cos22221123ln2cos2cos3lncos222xtttdxdtdtdttdtxtttttttCxxxC(4)【解析】:222211tan1tanarctan1cos2tancos1sec22dxxdxdxCxxxx(5)【解析】:2222sin1sinsinsintantansecsec11sincoscossectanxxxxdxdxdxxdxxxdxxdxxxxxxxC(6)【解析】:22222222222tan1sec11arctantansincostantandaxxadxdxxCaxbxaxbaaxbabb(7)【解析】:22222tan1sec111tansincostantancossincos
本文标题:考研数学高等数学强化习题-不定积分
链接地址:https://www.777doc.com/doc-7777213 .html