您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2021年高二数学公开课教案模板
高二数学公开课教案模板掌握简单的一维线性不等式,解决二次根中字母的取值问题;我们来看看初二数学公开课的教案吧!欢迎查看!初二数学公开课教案一一,教学目标1.理解二次根的含义;2.掌握简单的一维线性不等式,解决二次根中字母的取值问题;3.掌握二次根式的性质和性质,灵活运用;4.通过二次平方根计算培养学生的逻辑思维能力;5.通过二次根的性质和和的引入,渗透对称和正则的数学美。二,教学重点和难点重点:(1)次生根的意义;(2)二次根式中字母的取值范围。难点:确定二次根式中字母的取值范围。第三,教学方法启发式,说练结合。四,教学过程(a)复习问题1.什么是平方根和算术平方根?2.说出以下意思并计算(二)新课程的引入新课:二次根式定义:公式叫二次根式。要求学生讨论应注意的问题,引导学生总结:(1)公式只有在条件a0时才称为二次根式。是二次根式吗?如果偏旁含有字母,需要保证偏旁下的公式大于等于零,所以字母范围的限制也是偏旁的一部分。(2)是二次根,问学生:是二次根吗?显然不是,所以两次根是指某个公式的“外在形式”。请举例说明二次根,并说明为什么是二次根。以下例子用二次根定义,学生分析回答。例1当a是实数时,下列哪些公式是二次根?当2x为实数时,公式在实数范围内有意义。解决方法:省略。注:这个问题本质上是当x为数字时,x-3为非负数,公式有意义。例3当字母取任意值时,下列公式为二次根:(1)(2)(3)(4)分析:根据二次根的定义,处方数必须为非负,所以问题转化为求解不等式。解:(1)当A和B为任意实数时,有a2B20;当a和b是任意实数时,它们是二次根。(2)-3x0,x0,即x0时为二次根。(3)和x0,x0,当x0时,它是二次根式。(4)即x-20和x-20,x2.当x2是二次根式时。例4下面的公式是二次根,并得到公式中的字母所满足的条件:分析:根据二次根的定义,本例允许学生分析公式中字母应该满足的条件,进一步巩固二次根的定义,即只有当条件a0时才称为二次根,已知所有类型都是二次根,所以要求所有类型的处方数都大于等于零。解:(1)从2a30。(2)从获得3a-10。(3)因为x取任意实数时都有|x|0,所以,|x|0.10,公式为二次根式,所以字母x的取值范围都是实数。(4)b20from-b20,且仅当b=0时b2=0。因此,字母B满足以下条件:b=0。初二数学公开课教案二教学目标1.等腰三角形的概念;2.等腰三角形的性质;3.等腰三角形的概念及其应用。教学重点:1。等腰三角形的概念和性质;2.等腰三角形性质的应用。教学难点:等腰三角形三线统一的理解与应用。教学过程一、提问,创设情境在之前的研究中,我们了解了轴对称图形,探索了轴对称的性质,并能够制作出关于直线的简单平面图形,通过轴对称变换设计出一些漂亮的图案。在这节课中,我们从轴对称的角度来认识一些熟悉的几何图形。研究:三角形是轴对称图形吗?(2)什么样的三角形是轴对称图形?有些三角形是轴对称图形,有些不是。问题:什么样的三角形是轴对称的?满足轴对称条件的三角形就是轴对称二.新课介绍:要求学生通过自己的思考做出一个等腰三角形。做一条直线l,在l上取一个点a,在l外取一个点b,做一个点b的对称点cAbOut直线l,连接ab,BC,ca,就可以得到一个等腰三角形。等腰三角形的定义:两条等边的三角形叫等腰三角形。两个相等的边叫腰,另一边叫底,两个腰的夹角叫顶角,底腰的夹角叫底角。学生在他们的等腰三角形中标明它的腰、底、顶角和底角。思考:1.等腰三角形是轴对称图形吗?请找到它的对称轴。2.等腰三角形的两个底角是什么关系?3.顶角平分线的直线是等腰三角形的对称轴吗?4.底边中线的直线是等腰三角形的对称轴吗?底边高度所在的直线呢?结论:等腰三角形是一个轴对称图形,其对称轴是顶角平分线所在的直线。因为等腰三角形的两腰相等,可以知道等腰三角形是轴对称图形,它的对称轴是顶角平分线所在的直线。要求学生将他们的等腰三角形折叠起来,找出它的对称轴,看看它的两个底角是什么关系。沿着等腰三角形顶角的平分线对折,发现等腰三角形两边的部分重合。所以我们可以知道,顶角的平分线既是中线,也是底边上的高度。由此我们可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简称“等边等角”)。2.等腰三角形顶角的平分线、底边上的中线和底边上的高度重合(通常称为“三条线合一”)。受上面折叠过程的启发,我们可以通过制作等腰三角形的对称轴得到两个全等三角形,然后利用三角形的同余来证明这些性质。学生现在将编写这些证明过程。如图右图,在ABC中,AB=AC是底部BC的中线AD,因为所以,BADCAD(SSS)。所以b=c。】如图,在ABC中,AB=AC是顶角BAC的平分线AD,因为所以BADCAD。所以BD=CD,BDA=CDA=BDC=90。[例1]如图,在ABC中,AB=AC,d点在AC上,BD=BC=AD,求:ABC各角度的度数。分析:根据等边角的性质,我们可以得到A=ABD,ABC=C=BDC,然后通过BDC=AABD,可以得到ABC=c=BDC=2A.那么ABC的三个内角就可以由三角形内角之和为180得到。如果把A设为X,那么ABC和C可以用X来表示,这样过程更简单。解决方法:因为AB=AC,BD=BC=AD,所以ABC=C=BDC。A=ABD(等边角)。设A=x,那么BDC=AABD=2x。所以ABC=C=BDC=2x。所以在ABC中,有AABCC=x2x2x=180,X=36。在ABC中,a=35,ABC=c=72。【老师】我们通过练习巩固一下这节课学到的东西。.课堂练习:1。练习1,2,3。课本P51的2。阅读教材P49~P51,总结。.课时总结在这节课中,我们主要讨论等腰三角形的性质,并对这些性质做一个简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边角相等),等腰三角形的对称轴是它的顶角平分线,它的顶角平分线既是中线又是底边的高度。通过对这门课的学习,首先要了解和掌握这些性质,并灵活运用。.作业:课本P56练习12.3的问题1、2、3、4。黑板设计12.3.1.1等腰三角形首先,设计方案做了一个等腰三角形二、等腰三角形的性质:1。等边等角2。三人行初二数学公开课教案三教学目标1.理解和掌握等腰三角形的判定定理和推论2.线段或角度的相等可以通过其性质和判断来证明。教学重点:等腰三角形的判定定理及推论的应用教学难点:正确区分等腰三角形的判定和性质,利用等腰三角形的判定定理证明线段相等。教学过程:首先,回顾一下等腰三角形的性质二、新拨款:我提问并创造情境放映幻灯片。为了估计一条河流由东向西的宽度,地质学家选择了河流北岸的一棵树(B点)作为B标记,然后在南部由南向东60的方向上向C走一段距离(南岸的A点作为标志),测得ACB为30。这时,地质学家可以通过测量交流的长度来知道河流的宽度。学生们想知道用这种方法估算河流宽度的依据是什么。用这个问题,引导学生学习如何判断等腰三角形。二、新课程介绍1.从假设的性质定理和结论的变化,它引出了研究内容——。在ABC中,B=C,那么AB=AC?用两个等角做一个三角形,然后观察两个等角对边的关系。2.引导学生写出自己知道的内容,并根据数字进行验证。2.总结一下,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理的名称)。强调该定理是将三角形中的角的等式转化为边的等式的重要依据。类似性质定理,可以缩写为“等角等边”。4.引导学生说出所举例子中地质专家调查方法的依据。三.例子和练习1.如图2所示其中ABC为等腰三角形为[]2.如图3所示,已知在ABC中,AB=AC。A=36,那么C_____(根据什么?).如图4所示,已知a=36,c=72,ABC为三角形(根据什么?).如果已知a=36,c=72,BD平分ABC和AC于d,则可以判断图5中的等腰三角形有_____。如果已知AD=4cm,BC______cm。3.推理l__________以问题的形式。4.以问题2______的形式进行推论。举例:如果三角形外角的平分线与三角形的一边平行,证明三角形是等腰的。分析:引导学生根据题意做图,写出自己知道的,验证,分析证明。锻炼:5。(l)如图6所示,ABC中,AB=AC,ABC和ACB的平分线在f点相交,f作为DE//BC通过f,AB在d点相交,AC在e点相交,图中哪些三角形是等腰三角形?(2)在上述问题中,如果去掉条件AB=AC,其他条件不变,图6中是否存在等腰三角形?练习:P53的练习1、2、3。四级总结1.三角形如何判断为等腰三角形?2.三角形如何判断为等边三角形?3.等腰三角形的性质定理和判断定理有什么关系?4.证明线段相等,一般要考虑几个方面。五、作业:P56,练习12.3,问题5和6
本文标题:2021年高二数学公开课教案模板
链接地址:https://www.777doc.com/doc-7809984 .html