您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2021年新北师大版九年级数学上册教案模板
新北师大版九年级数学上册教案模板类比一维线性方程,可以理解一维二次方程的概念及其通式ax2bxc=0(a0),区分二次项及其系数、线性项及其系数、常数项等概念。我们来看看新北师大版九年级数学的教案。欢迎查看!新北师大版九年级数学上册教案11.类比一维线性方程,理解一维二次方程的概念及其通式ax2bxc=0(a0),区分二次项及其系数、线性项及其系数、常数项的概念。2.理解一维二次方程解的概念,会检验一个数是否是一维二次方程的解。焦点类比一维线性方程,理解一维二次方程、通式ax2bxc=0(a0)和一维二次方程解的概念,这些概念可以用来求解简单问题。困难一元二次方程及其二次项系数、线性项系数和常数项的识别。活动1复习旧知识1.什么是方程?你能举个方程的例子吗?2.下面哪个方程是一元线性方程?给出了一维线性方程的概念和一般形式。(1)2x-1(2)mxn=0(3)1x1=0(4)x2=13.下面哪个实数是方程2x-1=3的解?并给出了方程解的概念。A.0B.1C.2D.3活动2探索新知识方程式根据问题的意思。1.课本第2页的问题1。提问:(1)正方形有多大?哪个量应该设为未知?(2)这个题目中的数量关系是什么?我们能用这个定量关系来公式化方程吗?方程怎么设置?(3)这个方程能否化简为更简单的形式?完成后请说出方程式。2.课本2第2页的问题。提问:(1)题中有哪些量?从这些量中你能得到什么?(2)比赛队伍的数量和比赛次数有什么关系?如果有五个队比赛,每个队会打几场比赛?总共有20个游戏吗?如果不是20场,有多少场?(3)如果有X队,会有多少场?3.一个数比另一个数大3,两个数的乘积为0。找到这两个数字。提问:我们需要设置两个未知数吗?如果能设一个未知数,方程应该怎么列?4.正方形面积的两倍等于25。正方形的边长是多少?活动3归纳概念提问:(1)上述方程与一维线性方程有何异同?(2)类比一维线性方程,我们可以给这类方程取什么名字?(3)总结一元二次方程的概念。1.一元二次方程:它只包含_____________________________________________________________________2.一维二次方程的一般形式是ax2bxc=0(a0),其中ax2为二次项,A为二次项系数;Bx为线性项,b为线性项系数;c是常数项。提问:(1)一维二次方程的一般形式有什么特点?等号的左边和右边是什么?(2)为什么要把a0,B,C限制在0?(3)2x2-x1=0的线性系数是1吗?为什么?3.一维二次方程的解(根):使一维二次方程左右两边相等的未知量的值称为一维二次方程的解(根)。活动4示例和练习例1在下面的方程中,一个变量的二次方程是_________。(1)4x2=81;(2)2x2-1=3y;(3)1x21x=2;(4)2x2-2x(x7)=0。总结:判断一个方程是否为二次方程的依据是:(1)积分方程;(2)只包含一个未知数;(3)未知项的度为2。注意有些方程在化简前含有二次项,但化简后二次项的系数为0,所以这样的方程不是一元二次方程。例2课本第3页的例子。例3-2一元二次方程4.如果-4是二次方程2x7x-k=0的根,那么k的值是______。回答:1.a1;2.省略;3.省略;4.k=4。活动5课堂总结和作业安排课堂总结关于一元二次方程,我们学到了什么?二次方程的一般形式是什么?一般形式有哪些限制?你会解一元二次方程吗?工作安排课本第4页练习21.1的问题1~7。新北师大版九年级数学上册教案二理解一维二次方程“降阶”——变换的数学思想,并应用于解决一些具体问题。提出问题,列出一维二次方程ax2c=0,根据平方根的含义求解这个方程,然后把知识转移到a(exf)2c=0型的一维二次解。
本文标题:2021年新北师大版九年级数学上册教案模板
链接地址:https://www.777doc.com/doc-7816041 .html