您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2021年中国师范大学版八年级数学上册教案模板
中国师范大学版八年级数学上册教案模板把多项式mambmc写成m和(abc)的乘积,相当于从每一项中提出公因数m。作为多项式mambmc的一个因子,我们来看看中国师范大学出版的八年级数学第一册教案!欢迎查看!中国师范大学版八年级数学上册教案11.学习目标:1。让学生明白用公式法分解因素的意义;2.让学生掌握平方差分公式的因式分解二、关键难点重点:掌握平方差分公式的因式分解。难点:把单项式改成平方形式,然后用平方差分公式分解因子;学习方法:归纳、概括、总结第三,合作学习创设问题情境,引入新课程前两个小时我们学习了因式分解的定义,就是把一个多项式分解成几个代数表达式的乘积,还学习了通过提高公因式分解因子,即如果一个多项式中的所有项都含有相同的因子,即公因式可以提高,从而把多项式转化成几个因子的乘积。如果一个多项式的项没有相同的因子,那么因子就不能分解吗?当然不是。只要记住因式分解是多项式乘法的逆过程,就可以利用这个关系找到新的因式分解方法。这节课我们将学习另一种因式分解法,——公式法。1.请看看乘法公式(ab)(a-b)=a2-b2(1)左边是代数表达式乘法,右边是多项式,方程反过来a2-b2=(ab)(a-b)(2)左边是多项式,右边是代数表达式的乘积。我们来判断一下第二个公式是否从左向右因式分解。方程(2)可视为因式分解中的平方差分公式。a2-b2=(ab)(a-b)2.解释公式例如x2-16=(x)2-42=(x4)(x-4)。9m2-4n2=(3m)2-(2n)2=(3m2n)(3m-2n)第四,精致简洁例1,以下几种因式分解:(1)25-16x2;(2)9a2-b2。例2,以下几种因子分解因子:(1)9(mn)2-(m-n)2;(2)2x3-8x。补充示例:确定以下因式分解因子是否正确。(1)(ab)2-c2=a22abb2-c2。(2)a4-1=(a2)2-1=(a21)?(a2-1)。第五,课堂练习课本练习6.作业1。教科书练习2.分解系数:x4-16x3-4x4x2-(y-z)23.如果x2-y2=30,x-y=-5,求xy。中国师范大学版八年级数学上册教案二第一,学习目标:1.学生将使用完整的平方公式来分解这些因素。2.让学生学会多步多方法因式分解二、关键难点:重点:让学生掌握多步多方法因式分解法难点:让学生学会观察多项式的特性,适当安排步骤,选择不同的方法适当分解因子第三,合作学习创设问题情境,引入新课程完全平方公式(ab)2=a22abb2给新的一课1.用完全平方公式推导因式分解公式及其特点。倒写完整的平方公式:a22abB2=(ab)2;a2-2abb2=(a-b)2。具有这些特征的三项式是二项式的完全平方。如果写成平方形式,就实现了因式分解它用语言描述为:两个数的平方和,加上(或减去)这两个数乘积的两倍,等于这两个数和(或差)的平方a22abb2或a2-2abb2形式的公式称为完全平坦模式。从因式分解和代数表达式乘法的关系可以看出,如果把乘法公式反过来,可以用来因式分解某些多项式。这种因式分解法叫做使用公式法。练习。以下类型是完全平坦的吗?(1)a2-4a4;(2)x24x4y2;(3)4a22abB2;(4)a2-abB2;第四,精致简洁例1。分解以下完全平坦的方式:(1)x214x49;(2)(mn)2-6(mn)9。例2,以下几种因式分解:(1)3ax26xy3y2;(2)-x2-4y24xy。课堂练习:课本练习补充练习:分解以下类型:(1)(xy)26(xy)9;4(2ab)2-12(2ab)9;动词(verb的缩写)总结:两个数的平方和,加上(或减去)这两个数的乘积的两倍,等于这两个n的和(或差)的平方X2-4x42x2-4x2(x2y2)2-8(x2y2)16(x2y2)2-4x2y245ab2-20a-a3a-ab2a4-1(a21)2-4(a21)4中国师范大学版八年级数学上册教案3一.学习目标1.单音词和多项式统称为代数表达式。2.的商可以表示为。3.长方形面积10,长度7cm,宽度应为cm;矩形的面积为,长度和宽度为。4.将体积为20的水倒入底部面积为33厘米的圆柱形容器中;将体积为v的水倒入底部面积为s的圆柱形容器中,水面高度为。一般来说,如果A和B表示两个代数表达式,B含有字母,那么这个公式就叫做分数。分数和代数表达式统称为有理公式第三,合作交流解决问题:分数的分母代表除数。因为除数不能为0,所以分数的分母不能为0,即B0时,分数才有意义。当分子和分母相等时,公式的值为1,当分子和分母相反时,公式的值为-1。1.当x时,分数是有意义的;2.当x时,分数有意义;3.当B时,分数有意义;4.当X和Y满足时分数才有意义。四、课堂测量与控制:1.下列类型、xy、0、是分数是;代数表达式中有没有;很理性。有3.在以下类型中,无论X取什么值,分数都是有意义的()A.公元前。4.当x时,分数为零5.当x时,分数值为1;当x时,小数值为-1。
本文标题:2021年中国师范大学版八年级数学上册教案模板
链接地址:https://www.777doc.com/doc-7817822 .html