您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】巴州蒙古族中学2014-2015年九年级上期末数学试卷(1)
2014-2015学年新疆巴州蒙古族中学九年级(上)期末数学试卷(1)一、单选题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.11B.13C.11或13D.11和133.用配方法把代数式x2﹣4x+5变形,所得结果是()A.(x﹣2)2+1B.(x﹣2)2﹣9C.(x+2)2﹣1D.(x+2)2﹣54.如图,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.5.如图,△ABC中,∠C=70°,∠B=30°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在边BC上,则∠B′C′B的度数为()A.30°B.40°C.46°D.60°6.如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()A.30°B.60°C.90°D.45°7.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.2,1)8.半径为8cm的圆的内接正三角形的边长为()A.8cmB.4cmC.8cmD.4cm9.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.810.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.B.C.D.二.填空题:(每空2分,共18分.)11.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.12.某商店10月份的利润为600元,12月份的利润达到864元,则平均每月利润增长的百分率是.13.已知m是方程3x2﹣6x﹣2=0的一根,则m2﹣2m=.14.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是.则他将铅球推出的距离是m.15.点A(3,n)关于原点对称的点的坐标是(m,2),那么m=,n=.16.如果圆锥的底面周长是20π,侧面展开图所得的扇形的圆心角为120°,那么该圆锥的全面积为.17.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC=度.18.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n=.三.解答题(共52分)用指定的方法解下列方程:19.x2+2x﹣35=0(配方法解)20.解方程:4x2+12x+9=0.21.在正方形网格中建立如图所示的平面直角坐标系xOy.△ABC的三个顶点都在格点上,点A、B、C的坐标分别是A(4,4)、B(1,2)、C(3,2),请解答下列问题.(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)将△ABC绕点O逆时针旋转90°,画出旋转后的△A3B3C3.并写出点A3的坐标:A3(,).22.下图是输水管的切面,阴影部分是有水部分,其中水面AB宽16cm,水最深4cm.(1)求输水管的半径.(2)当∠AOB=120°时,求阴影部分的面积.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.25.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).(1)求售价与利润的函数关系式;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?2014-2015学年新疆巴州蒙古族中学九年级(上)期末数学试卷(1)参考答案与试题解析一、单选题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.11B.13C.11或13D.11和13考点:解一元二次方程-因式分解法;三角形三边关系.专题:计算题.分析:利用因式分解法求出方程的解得到第三边长,即可求出此时三角形的周长.解答:解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x1=2,x2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为3+4+6=13.故选B.点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.3.用配方法把代数式x2﹣4x+5变形,所得结果是()A.(x﹣2)2+1B.(x﹣2)2﹣9C.(x+2)2﹣1D.(x+2)2﹣5考点:配方法的应用.专题:配方法.分析:根据二次项与一次项x2﹣4x再加上4即构成完全平方式,因而把二次三项式x2﹣4x+5变形为二次三项式x2﹣4x+4﹣4+5即可.解答:解:原式=x2﹣4x+4﹣4+5=(x﹣2)2+1,故选A.点评:本题主要考查了配方法的应用,难度适中.4.如图,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:几何图形问题.分析:根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.解答:解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故D选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;综上所述B选项正确.故选:B.点评:考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.5.如图,△ABC中,∠C=70°,∠B=30°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在边BC上,则∠B′C′B的度数为()A.30°B.40°C.46°D.60°考点:旋转的性质.分析:由旋转的性质可得:AC=AC′,∠AC′B′=∠C=70°,然后由等腰三角形的性质,求得∠AC′C的度数,继而求得答案.解答:解:∵根据题意得:AC=AC′,∠AC′B′=∠C=70°,∴∠AC′C=∠C=70°,∴∠AC′B=180°﹣∠AC′C=110°,∴∠B′C′B=∠AC′B﹣∠AC′B′=40°.故选B.点评:此题考查了旋转的性质以及等腰三角形的性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.6.如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()A.30°B.60°C.90°D.45°考点:圆周角定理;等边三角形的性质.专题:压轴题;动点型.分析:由等边三角形的性质知,∠A=60°,即弧BC的度数为60°,可求∠BPC=60°.解答:解:∵△ABC正三角形,∴∠A=60°,∴∠BPC=60°.故选B.点评:本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.和等边三角形的性质求解.7.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.2,1)考点:二次函数的性质.分析:将二次函数的一般形式化为顶点式后即可直接说出其顶点坐标;解答:解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选B.点评:主要考查了二次函数的性质和求抛物线的对称轴和顶点坐标的方法.除去用配方法外还可用公式法.8.半径为8cm的圆的内接正三角形的边长为()A.8cmB.4cmC.8cmD.4cm考点:正多边形和圆.分析:欲求△ABC的边长,把△ABC中BC边当弦,作BC的垂线,在Rt△BOD中,求BD的长;根据垂径定理知:BC=2BD,从而求正三角形的边长.解答:解:如图所示:∵半径为8cm的圆的内接正三角形,∴在Rt△BOD中,OB=8cm,∠OBD=30°,∴BD=cos30°×OB=×8=4(cm),∵BD=CD,∴BC=2BD=8cm.故它的内接正三角形的边长为8cm.故选:A.点评:本题主要考查了正多边形和圆,根据正三角形的性质得出,∠OBD=30°是解题关键.9.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.10.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.B.C.D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解;袋子中球的总数为:2+3=5,取到黄球的概率为:.故选:B.点评:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二.填空题:(每空2分,共18分.)11.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.考点:根的判别式.分析:由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.解答:解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.点评:此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.某商店10月份的利润为600元,12月份的利润达到864元,则平均每月利润增长的百分率是20%.考点:一元二次方程的应用.专题:应用题.分析:设该商店平均每月利润增长的百分率是x,那么11月份的利润为600(1+x),12月份的利润为600(1+x)(1+x),然后根
本文标题:【解析版】巴州蒙古族中学2014-2015年九年级上期末数学试卷(1)
链接地址:https://www.777doc.com/doc-7836410 .html