您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】临沂市开发区2014-2015学年八年级上期中数学试卷
山东省临沂市开发区2014-2015学年八年级上学期期中数学试卷一、选择题(每小题3分,共42分,将唯一正确答案的代号的字母填在下面的方格内)1.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个B.5个C.4个D.3个2.下列标志中,可以看作是轴对称图形的是()A.B.C.D.3.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)4.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm5.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对6.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.287.若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或15°B.75°C.15°D.75°或30°8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°9.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.610.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°11.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条B.8条C.9条D.10条12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点13.下面结论:(1)一锐角和斜边对应相等两个直角三角形全等;(2)顶角和底角对应相等的两个等腰三角形全等;(3)顶角和底边对应相等的两个等腰三角形全等;(4)三个角都相等的两个三角形全等.其中正确的个数为()A.1个B.2个C.3个D.4个14.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC二、填空题(每小题3分,共15分,答案直接填在题中的横线上)15.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件__________,依据是__________.16.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC=__________.17.如图,已知四边形ABCD中,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2=__________.18.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为__________.19.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是__________.三、解答题(共58分)20.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.21.如图已知△ABC,(1)分别画出于△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)写出△A1B1C1和△A2B2C2各顶点坐标.22.如图,在正三角形ABC的BC边上任取一点D,以CD为边向外作正三角形CDE.求证:BE=AD.23.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.24.如图是某城市的部分街道示意图,AB=CD,AD=BC,EF=FC,DF⊥EC.公交车甲从A站出发,按照A、D、E、F的顺序到达F站;公交车乙从A站出发,按着A、B、C、F的顺序到达F站.如果甲、乙分别从A站同时出发,在各自的路径运行中速度及所耽误的时间均相同,猜想哪一辆公交车先到达F站?为什么?25.A、B两点在直线c的两侧,在c上找一点P,使点P到A、B的距离之差最大,写出作法,并说明理由.26.将一副三角板按照如图1所示的方式放置,其中两直角顶点重合于点C,两斜边AB、DE相交于F,∠A=30°,∠CDE=45°.(1)求∠EFB的度数;(2)保持三角板ABC的位置不懂,将三角板CDE绕其直角顶点C顺时针旋转,当旋转到CD∥AB时(如图2所示),求此时∠ACD的度数.(3)在(2)的基础上,将三角板CDE继续绕点C顺时针旋转,直至回到图1开始的位置.在这一过程中,是否还会出现三角板CDE的一边与AB平行的情况?如果会出现,请你画出示意图,并直接写出相应的∠ACD的大小;如果不会出现,也请说明理由.山东省临沂市开发区2014-2015学年八年级上学期期中数学试卷一、选择题(每小题3分,共42分,将唯一正确答案的代号的字母填在下面的方格内)1.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个B.5个C.4个D.3个考点:三角形三边关系.分析:已知两边时,三角形第三边的范围是>两边的差,<两边的和.这样就可以确定x的范围,从而确定x的值.解答:解:根据题意得:5<x<11.∵x是偶数,∴可以取6,8,10这三个数.故选D.点评:本题主要考查三角形中如何已知两边来确定第三边的范围.2.下列标志中,可以看作是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.点评:此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.3.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解答:解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm考点:含30度角的直角三角形.分析:根据直角三角形30°角所对的直角边等于斜边的一半解答.解答:解:∵直角三角形中30°角所对的直角边为2cm,∴斜边的长为2×2=4cm.故选B.点评:本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,是基础题,熟记性质是解题的关键.5.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对考点:等腰三角形的性质.分析:分边11cm是腰长与底边两种情况讨论求解.解答:解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.点评:本题考查了等腰三角形的性质,难点在于要分情况讨论.6.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.28考点:线段垂直平分线的性质.分析:利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.解答:解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.点评:本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.7.若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或15°B.75°C.15°D.75°或30°考点:含30度角的直角三角形;等腰三角形的性质.分析:因为三角形的高有三种情况,而直角三角形不合题意,故舍去,所以应该分两种情况进行分析,从而得到答案.解答:解:当等腰三角形是锐角三角形时,如图1所示∵CD⊥AB,CD=AC,∴sin∠A==,∴∠A=30°,∴∠B=∠ACB=75°;当等腰三角形是钝角三角形时,如图2示,∵CD⊥AB,即在直角三角形ACD中,CD=AC,∴∠CAD=30°,∴∠CAB=150°,∴∠B=∠ACB=15°.故其底角为15°或75°.故选A.点评:此题主要考查等腰三角形的性质,含30°的角的直角三角形的性质,在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°考点:平行线的性质;三角形内角和定理.分析:根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.解答:解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.点评:本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.9.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6考点:含30度角的直角三角形;等腰三角形的性质.专题:计算题.分析:过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.解答:解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.点评:此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.10.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°考点:全等三角形的判定与性质;三角形内角和定理.分析:已知可得△ABF≌△ACE,结合三角形内角和可得∠AFB=∠AEC=95°,在由外角性质可得,∠EOB=95°﹣25°=70°解答:解:∵AE=AF,AB=AC,∠A=60°∴△ABF≌△ACE∴∠C=∠B=25°∴∠AEC=180°﹣60°﹣25°=95°,∴∠EOB=95°﹣25°=70°故选B.点评:主要考查了三角形中内角与外角之间的关系和全等三角形的判断和性质.此题主要运用了外角等于两个不相邻的内角和、全等三角形对应角相等以及三角形内角和定理.11.多边形每一个内角都等于15
本文标题:【解析版】临沂市开发区2014-2015学年八年级上期中数学试卷
链接地址:https://www.777doc.com/doc-7836516 .html