您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】娄底市树德中学2015届九年级上期末模拟数学试卷
湖南省娄底市树德中学2015届九年级上学期期末数学模拟试卷一、选择题3’*101.(3分)若双曲线y=的图象经过第二、四象限,则k的取值范围是()A.k>0B.k<0C.k≠0D.不存在2.(3分)已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<03.(3分)二次函数y=(x﹣1)2+2的最小值是()A.﹣2B.2C.﹣1D.14.(3分)天柱山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志.从而估计该地区有穿山甲()A.400只B.600只C.800只D.1000只5.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.26.(3分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:27.(3分)在Rt△ABC中,∠C=90°,若tanA=,则sinA等于()A.B.C.D.8.(3分)在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为2.5m,那么影长为30m的旗杆的高度是()A.20mB.16mC.18mD.15m9.(3分)方程(x﹣1)(x+2)=0的根是()A.x1=1,x2=﹣2B.x1=﹣1,x2=2C.x1=﹣1,x2=﹣2D.x1=1,x2=210.(3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25B.36(1﹣2x)=25C.36(1﹣x)2=25D.36(1﹣x2)=25二、填空题3’*811.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.12.(3分)若两个连续偶数的积是224,则这两个数的和是.13.(3分)已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.14.(3分)函数的图象是开口向下的抛物线,则m=.15.(3分)如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=.16.(3分)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=.17.(3分)已知:如图,E(﹣4,2),F(﹣1,﹣1),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为.18.(3分)如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为.三、计算题6’*219.(6分)计算:(π﹣3.14)0+(﹣1)2015+|1﹣|﹣3tan30°.20.(6分)解方程:2x2+3x﹣5=0.四、解答题21.(10分)如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.22.(10分)如图,甲、乙两栋高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)23.(10分)某商场销售某品牌童装,平均每天可以售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,经调查发现,每件童装每降价1元,商场平均可多销售2件,若商场每天想盈利1200元,则童装应降价多少元?24.(10分)为进一步促进青少年科技模型教育的普及和发展,丰富校园科技体育活动,某市6月份将举行中小学科技运动会.下图为某校将参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别?)的参赛人数统计图:(1)该校参加航模比赛的总人数是人,空模所在扇形的圆心角的度数是;(2)把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年该市中小学参加航模比赛人数共2485人,请你估算今年参加航模比赛的获奖人数约是多少人?25.(14分)如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10米).如果AB的长为x,面积为y,(1)求面积y与x的函数关系(写出x的取值范围);(2)x取何值时,面积最大?面积最大是多少?湖南省娄底市树德中学2015届九年级上学期期末数学模拟试卷参考答案与试题解析一、选择题3’*101.(3分)若双曲线y=的图象经过第二、四象限,则k的取值范围是()A.k>0B.k<0C.k≠0D.不存在考点:反比例函数的性质.分析:直接根据反比例函数的性质直接回答即可.解答:解:∵双曲线y=的图象经过第二、四象限,∴k<0,故选B.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.2.(3分)已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0考点:反比例函数图象上点的坐标特征.专题:压轴题.分析:根据反比例函数的增减性再结合反比例函数图象上点的坐标特征解答即可.解答:解:∵k>0,函数图象在一三象限;若x1<0<x2.说明A在第三象限,B在第一象限.第一象限的y值总比第三象限的点的y值大,∴y1<0<y2.故选A.点评:在反比函数中,已知两点的横坐标,比较纵坐标的大小,首先应区分两点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.3.(3分)二次函数y=(x﹣1)2+2的最小值是()A.﹣2B.2C.﹣1D.1考点:二次函数的最值.分析:考查对二次函数顶点式的理解.抛物线y=(x﹣1)2+2开口向上,有最小值,顶点坐标为(1,2),顶点的纵坐标2即为函数的最小值.解答:解:根据二次函数的性质,当x=1时,二次函数y=(x﹣1)2+2的最小值是2.故选:B.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.(3分)天柱山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志.从而估计该地区有穿山甲()A.400只B.600只C.800只D.1000只考点:用样本估计总体.专题:应用题.分析:40只穿山甲,发现其中2只有标志,说明在样本中,有标记的占到,而有标记的共有20只,根据比例可求出总数.解答:解:20=400(只).故选A.点评:统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.5.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.2考点:二次函数的图象.专题:压轴题.分析:由“对称轴是直线x=1,且经过点P(3,0)”可知抛物线与x轴的另一个交点是(﹣1,0),代入抛物线方程即可解得.解答:解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选A.点评:巧妙利用了抛物线的对称性.6.(3分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(3分)在Rt△ABC中,∠C=90°,若tanA=,则sinA等于()A.B.C.D.考点:同角三角函数的关系.分析:据三角函数的定义,tanA==,因而可以设a=3,b=4根据勾股定理可以求得c的长,然后利用正弦的定义即可求解.解答:解:∵tanA==,∴设a=3,b=4,∴由勾股定理得到c=5,∴sinA=,故选D.点评:本题考查了三角函数的定义,正确理解三角函数可以转化成直角三角形的边的比值,是解题的关键.8.(3分)在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为2.5m,那么影长为30m的旗杆的高度是()A.20mB.16mC.18mD.15m考点:相似三角形的应用.分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.解答:解:∵,∴,解得旗杆的高度==18m.故选C.点评:本题考查相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.9.(3分)方程(x﹣1)(x+2)=0的根是()A.x1=1,x2=﹣2B.x1=﹣1,x2=2C.x1=﹣1,x2=﹣2D.x1=1,x2=2考点:解一元二次方程-因式分解法.专题:计算题.分析:根据因式分解法把原方程转化为x﹣1=0或x+2=0,然后解一次方程即可.解答:解:x﹣1=0或x+2=0,所以x1=1,x2=﹣2.故选A.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).10.(3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25B.36(1﹣2x)=25C.36(1﹣x)2=25D.36(1﹣x2)=25考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=25,把相应数值代入即可求解.解答:解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=25.故选:C.点评:考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.二、填空题3’*811.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.考点:根的判别式.分析:由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.解答:解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>
本文标题:【解析版】娄底市树德中学2015届九年级上期末模拟数学试卷
链接地址:https://www.777doc.com/doc-7836520 .html