您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】松原市扶余县2014-2015学年八年级上期中数学试卷
2014-2015学年吉林省松原市扶余县八年级(上)期中数学试卷一、选择题(每小题2分,共12分)1.下列交通标志是轴对称图形的是()A.B.C.D.2.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72°B.45°C.36°D.30°3.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC5.如图,DE⊥AC,垂足为E,CE=AE.若AB=12cm,BC=10cm,则△BCD的周长是()A.22cmB.16cmC.23cmD.25cm6.若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A.12B.15C.12或15D.9二、填空题(每小题3分,共24分)7.若点P(m,m﹣1)在x轴上,则点P关于x轴对称的点为.8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.9.如图,PM⊥OA,PN⊥OB,垂足分别为M、N.PM=PN,若∠BOC=30°,则∠AOB=.10.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC≌△FED.(只需填写一个即可)11.从长为3cm,5cm,7cm,10cm的四根木棒中选出三根组成三角形,共有种选法.12.若等腰三角形一腰上的高和另一腰的夹角为40°,该三角形的一个底角是.13.如图,△ABC为等边三角形,AD为BC边上的高,E为AC边上的一点,且AE=AD,则∠EDC=.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.三、解答题(每小题4分,共20分)15.如图,两个四边形关于直线l对称,∠C=90°,试写出a,b的长度,并求出∠G的度数.16.已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.17.将16个相同的小正方形拼成正方形网格,并将其中的两个小正方形涂成黑色,请你用两种不同的方法分别在图甲、图乙中再将两个空白的小正方形涂黑,使它成为轴对称图形.18.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1;B1;C1.(3)△A1B1C1的面积为.19.在△ABC中,∠BAC=50°,∠B=45°,AD是△ABC的一条角平分线,求∠ADB的度数.四、解答题(每小题5分,共28分)20.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.21.如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同﹣直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)(2)选择(1)中你写出的一个命题,说明它正确的理由.22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.五、解答题(每小题8分,共16分)23.已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F.求证:BE+CF=EF.24.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.试猜想线段AD与AG的数量及位置关系,并证明你的猜想.六、解答题(每小题7分,共20分)25.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.26.如图,△ABC是等边三角形,点M是BC上任意一点,点N是CA上任意一点,且BM=CN,直线BN与AM相交于点Q,就下面给出的两种情况,猜测∠BQM等于多少度,并利用图②说明结论的正确性.2014-2015学年吉林省松原市扶余县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共12分)1.(2012•阜新)下列交通标志是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.点评:本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合是解题的关键.2.(2014秋•扶余县期中)在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72°B.45°C.36°D.30°考点:三角形内角和定理.分析:设∠A=x,则∠B=∠C=2x,再由三角形内角和定理求出x的值即可.解答:解:设∠A=x,则∠B=∠C=2x,∵∠A+∠B+∠C=180°,∴x+2x+2x=180°,解得x=36°.故选C.点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.(2014春•吉州区期末)下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个考点:全等图形.专题:常规题型.分析:根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.解答:解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.点评:本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.4.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可.解答:解:A、∵在△ABD和△ACD中∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选D.点评:本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.(2014秋•扶余县期中)如图,DE⊥AC,垂足为E,CE=AE.若AB=12cm,BC=10cm,则△BCD的周长是()A.22cmB.16cmC.23cmD.25cm考点:线段垂直平分线的性质.分析:先根据DE⊥AC,垂足为E,CE=AE得出CD=AD,故可得出结论.解答:解:∵DE⊥AC,垂足为E,CE=AE,AB=12cm,BC=10cm,∴CD=AD,∴BC+BD+CD=BC+AB=10+12=22cm.故答案为:A.点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.6.(2010•泸县模拟)若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A.12B.15C.12或15D.9考点:等腰三角形的性质.专题:应用题;分类讨论.分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解答:解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.二、填空题(每小题3分,共24分)7.(2014秋•扶余县期中)若点P(m,m﹣1)在x轴上,则点P关于x轴对称的点为(1,0).考点:关于x轴、y轴对称的点的坐标.分析:根据x轴上的点的纵坐标为0列式求出m的值,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解答:解:∵点P(m,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴点P的坐标为(1,0),∴点P关于x轴对称的点为(1,0).故答案为:(1,0).点评:本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.8.(2004•哈尔滨)一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.考点:多边形内角与外角.专题:计算题.分析:任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n﹣2)•180°即可求得内角和.解答:解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.点评:本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.9.(2014秋•扶余县期中)如图,PM⊥OA,PN⊥OB,垂足分别为M、N.PM=PN,若∠BOC=30°,则∠AOB=60°.考点:角平分线的性质.分析:根据到角的两边距离相等的点在角的平分线上判断出OC平分∠AOB,再根据角平分线的定义可得∠AOB=2∠BOC.解答:解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC=2×30=60°.故答案为:60°.点评:本题考查了到角的两边距离相等的点在角的平分线上的性质,角平分线的定义,是基础题,熟记性质是解题的关键.10.(2014春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F或AB∥EF时,就可得到△ABC≌△FED.(只需填写一个即可)考点:全等三角形的判定.专题:证明题.分析:要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.解答:解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题
本文标题:【解析版】松原市扶余县2014-2015学年八年级上期中数学试卷
链接地址:https://www.777doc.com/doc-7836576 .html