您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 14.3.2运用平方差公式因式分解(第1课时)课文练习含答案
14.3.2公式法第1课时运用平方差公式因式分解课前预习要点感知a2-b2=________,即两个数的平方差,等于这两个数的和与这两个数的差的________.预习练习(岳阳中考)分解因式:x2-9=____________________________________当堂训练知识点1直接运用平方差公式因式分解1.分解因式:(1)4x2-y2;(2)-16+a2b2;(3)x2100-25y2;(4)(x+2y)2-(x-y)2.知识点2先提公因式后运用平方差公式因式分解2.分解因式:(1)a3-9a;(2)3m(2x-y)2-3mn2;(3)(a-b)b2-4(a-b).课后作业3.(云南中考)分解因式:3x2-12=____________________________________4.(梅州中考)分解因式:m3-m=_________________________________________________________.5.(孝感中考)若a-b=1,则代数式a2-b2-2b的值为________.6.在实数范围内因式分解:(1)x2-3;(2)x4-4.挑战自我7.老师在黑板上写出三个算式:52-32=8×2,92-72=8×4,152-32=8×27,王华接着又写了两个具有同样规律的算式:112-52=8×12,152-72=8×22,…(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)用文字写出反映上述算式的规律;(3)证明这个规律的正确性.参考答案要点感知(a+b)(a-b)积预习练习(x+3)(x-3)当堂训练1.(1)原式=(2x+y)(2x-y).(2)原式=(ab+4)(ab-4).(3)原式=(x10+5y)(x10-5y).(4)原式=[(x+2y)+(x-y)][(x+2y)-(x-y)]=3y(2x+y).2.(1)原式=a(a2-9)=a(a+3)(a-3).(2)原式=3m[(2x-y)2-n2]=3m(2x-y+n)(2x-y-n).(3)原式=(a-b)(b2-4)=(a-b)(b+2)(b-2).课后作业3.3(x-2)(x+2)4.m(m+1)(m-1)5.16.(1)原式=(x-3)(x+3).(2)原式=(x2+2)(x2-2)=(x2+2)(x+2)(x-2).挑战自我7.(1)答案不唯一,如:112-92=8×5,132-112=8×6.(2)任意两个奇数的平方差等于8的倍数.(3)证明:设m,n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2-(2n+1)2=4(m-n)(m+n+1).①当m,n同是奇数或偶数时,m-n一定为偶数,∴4(m-n)(m+n+1)一定是8的倍数;②当m,n一奇一偶时,则m+n+1一定为偶数,∴4(m-n)(m+n+1)一定是8的倍数.综上所述,任意两个奇数的平方差是8的倍数.
本文标题:14.3.2运用平方差公式因式分解(第1课时)课文练习含答案
链接地址:https://www.777doc.com/doc-7836804 .html