您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 安徽省合肥市瑶海区2016届九年级上期末数学试卷含答案解析
安徽省合肥市瑶海区2016届九年级上学期期末数学试卷一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项写在题后的表格中,不选、错选或多选的,一律得0分.1.若=,则的值为()A.1B.C.D.2.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是()A.b=atanBB.a=ccosBC.D.a=bcosA3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABCC.=D.=5.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.6.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11B.﹣2C.1D.﹣57.如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.1个B.2个C.3个D.4个8.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2C.2﹣D.﹣29.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S四边形EFBC为()A.2:5B.4:25C.4:31D.4:3510.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.二.填空题(本大题共4小题,每小题5分,满分20分)11.抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=.13.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.14.如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是(写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC=BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.三.(本大题共2小题,每小题8分,满分16分)15.计算:4sin60°+tan45°﹣.16.已知二次函数y=ax2+4x+2的图象经过点A(3,﹣4).(1)求a的值;(2)求此函数图象抛物线的顶点坐标;(3)直接写出函数y随自变量增大而减小的x的取值范围.四、(本大题共2小题,每小题8分,满分16分)17.如图,在6×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的格点上.请按要求画图:(1)以点B为位似中心,在方格内将△ABC放大为原来的2倍,得到△EBD,且点D、E都在单位正方形的顶点上.(2)在方格中作一个△FGH,使△FGH∽△ABC,且相似比为,点F、G、H都在单位正方形的顶点上.18.如图,MN经过△ABC的顶点A,MN∥BC,AM=AN,MC交AB于D.(1)求证:△ADE∽△ABC;(2)连结DE,如果DE=1,BC=3,求MN的长.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)IE2=ED•EA.20.为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)六、(本题满分12分)21.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.七、(本题满分12分)22.对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相同,因此△ACB和△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相反,因此△ACB和△A′B′C′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是;互为逆相似的是.(填写所有符合要求的序号).(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边AB上(不与点A,B重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,请在备用图中画出图形并说明截线满足的条件,不必说明理由.八、(本题满分14分)23.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?安徽省合肥市瑶海区2016届九年级上学期期末数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项写在题后的表格中,不选、错选或多选的,一律得0分.1.若=,则的值为()A.1B.C.D.【考点】比例的性质.【专题】计算题.【分析】根据合分比性质求解.【解答】解:∵=,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.2.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是()A.b=atanBB.a=ccosBC.D.a=bcosA【考点】锐角三角函数的定义.【专题】应用题.【分析】根据三角函数的定义就可以解决.【解答】解:∵∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴A、tanB=,则b=atanB,故本选项正确,B、cosB=,故本选项正确,C、sinA=,故本选项正确,D、cosA=,故本选项错误,故选D.【点评】此题考查直角三角形中两锐角的三角函数之间的关系,难度适中.3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°【考点】圆周角定理.【专题】几何图形问题.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABCC.=D.=【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.5.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.【考点】解直角三角形的应用-坡度坡角问题.【专题】压轴题.【分析】利用所给的角的余弦值求解即可.【解答】解:∵BC=5米,∠CBA=∠α.∴AB==.故选:B.【点评】此题主要考查学生对坡度、坡角的理解及运用.6.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11B.﹣2C.1D.﹣5【考点】二次函数的图象.【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.【点评】本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.7.如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.1个B.2个C.3个D.4个【考点】垂径定理;勾股定理.【分析】根据垂径定理计算.【解答】解:如图OD=OA=OB=5,OE⊥AB,OE=3,∴DE=OD﹣OE=5﹣3=2cm,∴点D是圆上到AB距离为2cm的点,∵OE=3cm>2cm,∴在OD上截取OH=1cm,过点H作GF∥AB,交圆于点G,F两点,则有HE⊥AB,HE=OE﹣OH=2cm,即GF到AB的距离为2cm,∴点G,F也是圆上到AB距离为2cm的点.故选C.【点评】本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.8.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2C.2﹣D.﹣2【考点】三角形的内切圆与内心;等腰三角形的性质;三角形的外接圆与外心.【分析】由于直角三角形的外接圆半径是斜边的一半,由此可求得等腰直角三角形的斜边长,进而可求得两条直角边的长;然后根据直角三角形内切圆半径公式求出内切圆半径的长.【解答】解:∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为2,∴它的内切圆半径为:R=(2+2﹣4)=2﹣2.故选B.【点评】本题考查了三角形的外接圆和三角形的内切圆,等腰直角三角形的性质,要注意直角三角形内切圆半径与外接圆半径的区别:直角三角形的内切圆半径:r=(a+b﹣c);(a、b为直角边,c为斜边)直角三角形的外接圆半径:R=c.9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S四边形EFBC为(
本文标题:安徽省合肥市瑶海区2016届九年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7837569 .html