您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 安庆市2016-2017学年八年级上期末数学试卷含答案解析
2016-2017学年安徽省安庆市八年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列表述中,能确定准确位置的是()A.教室第三排B.湖心南路C.南偏东40°D.东经112°,北纬51°2.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④3.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6)B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)4.下列命题是真命题的是()A.若直线y=﹣kx﹣2过第一、三、四象限,则k<0B.三角形三条角平分线的交点到三个顶点的距离相等C.如果∠A=∠B,那么∠A和∠B是对顶角D.如果a•b=0,那么a=05.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.﹣6<a<﹣3B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>26.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A.y=2x+4B.y=﹣2x﹣2C.y=2x﹣4D.y=﹣2x﹣27.如图,已知∠1=2,AC=AD,从下列条件:①AB=AE②BC=ED③∠C=∠D④∠B=∠E中添加一个条件,能使△ABC≌△AED的有()A.1个B.2个C.3个D.4个8.如图,∠ADB=∠AEC=100°,∠BAD=50°,BD=EC,则∠C=()A.20°B.50°C.30°D.40°9.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④10.如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m﹣1)D.二、填空题(共4小题,每小题5分,满分20分)11.已知y﹣2与x成正比例,当x=1时,y=5,那么y与x的函数关系式是.12.如图,在△ABC中,∠ABC=48°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠ABE=°.13.在直角坐标系中,点A(﹣1,2),点P(0,y)为y轴上的一个动点,当y=时,线段PA的长得到最小值.14.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、本题共2小题,每小题8分,满分16分15.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.16.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.四、(本题共2小题,每小题8分,共16分)17.如图,AC=BD,AB=DC.求证:∠B=∠C.18.在同一平面直角坐标系内画一次函数y1=﹣x+4和y2=2x﹣5的图象,根据图象求:(1)方程﹣x+4=2x﹣5的解;(2)当x取何值时,y1>y2?五、(本题共2小题,每小题10分,共20分)19.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.20.已知一次函数y=kx+b的自变量的取值范围是﹣3≤x≤6,相应的函数值的取值范围是﹣5≤y≤﹣2,求这个一次函数的解析式.六、(本题满分12分)21.某公司需要购买甲、乙两种商品共150件,甲、乙两种商品的价格分别为600元和1000元.且要求乙种商品的件数不少于甲种商品件数的2倍.设购买甲种商品x件,购买两种商品共花费y元.(1)请求出y与x的函数关系式及x的取值范围.(2)试利用函数的性质说明,当购买多少件甲种商品时,所需要的费用最少?七、(本题满分12分)22.(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.八、(本题满分14分)23.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.2016-2017学年安徽省安庆市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列表述中,能确定准确位置的是()A.教室第三排B.湖心南路C.南偏东40°D.东经112°,北纬51°【考点】坐标确定位置.【分析】根据坐标的定义对各选项分析判断利用排除法求解.【解答】解:A、教室第三排,不能确定具体位置,故本选项错误;B、湖心南路,不能确定具体位置,故本选项错误;C、北偏东40°,不能确定具体位置,故本选项错误;D、东经112°,北纬51°,能确定位置,故本选项正确.故选:D.2.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【考点】利用轴对称设计图案.【分析】根据轴对称的定义,结合所给图形进行判断即可.【解答】解:①不是轴对称图形;②是轴对称图形;③是轴对称图形;④是轴对称图形;故是轴对称图形的是②③④.故选:D.3.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6)B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)【考点】一次函数图象上点的坐标特征.【分析】由于正比例函数图象上点的纵坐标和横坐标的比相同,找到比值相同的一组数即可.【解答】解:A、∵=,∴两点在同一个正比例函数图象上;B、∵≠,∴两点不在同一个正比例函数图象上;C、∵≠,∴两点不在同一个正比例函数图象上;D、∵≠,两点不在同一个正比例函数图象上;故选A.4.下列命题是真命题的是()A.若直线y=﹣kx﹣2过第一、三、四象限,则k<0B.三角形三条角平分线的交点到三个顶点的距离相等C.如果∠A=∠B,那么∠A和∠B是对顶角D.如果a•b=0,那么a=0【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、若直线y=﹣kx﹣2过第一、三、四象限,则﹣k>0,即k<0,故本选项正确;B、三角形三条角平分线的交点到三边的距离相等,故本选项错误;C、如果∠A=∠B,那么∠A和∠B可能是等腰三角形的两个底角,故本选项错误;D、如果a•b=0,那么a=0或b=0,故本选项错误.故选A.5.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.﹣6<a<﹣3B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>2【考点】三角形三边关系.【分析】根据三角形的三边关系,两边之和大于第三边和两边之差小于第三边列出不等式组求出其解即可.【解答】解:由题意,得8﹣3<1﹣2a<8+3,即5<1﹣2a<11,解得:﹣5<a<﹣2.故选B.6.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A.y=2x+4B.y=﹣2x﹣2C.y=2x﹣4D.y=﹣2x﹣2【考点】一次函数图象与几何变换.【分析】先确定直线l的解析式,然后根据平移的规律即可求得.【解答】解:∵直线L经过(0,0)、(1,2),∴直线l为y=2x,∵直线l沿x轴正方向向右平移2个单位得到直线l′,∴直线l′为y=2(x﹣2),即y=2x﹣4,故选C.7.如图,已知∠1=2,AC=AD,从下列条件:①AB=AE②BC=ED③∠C=∠D④∠B=∠E中添加一个条件,能使△ABC≌△AED的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】由∠1=∠2结合等式的性质可得∠CAB=∠DAE,再利用全等三角形的判定定理分别进行分析即可.【解答】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,①加上条件AB=AE可利用SAS定理证明△ABC≌△AED;②加上BC=ED不能证明△ABC≌△AED;③加上∠C=∠D可利用ASA证明△ABC≌△AED;④加上∠B=∠E可利用AAS证明△ABC≌△AED;故选:C.8.如图,∠ADB=∠AEC=100°,∠BAD=50°,BD=EC,则∠C=()A.20°B.50°C.30°D.40°【考点】等腰三角形的性质.【分析】根据AD=AE,BD=EC,∠ADB=∠AEC=110°,可知△ADB≌△AEC,可得出AB=AC,根据等腰三角形的性质即可解答.【解答】解:∵∠ADB=∠AEC=100°,∴∠ADE=∠AED=80°,∴AD=AE,∵∠BAD=50°,∴∠B=180°﹣100°﹣50°=30°,在△ADB与△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC,∴∠B=∠C=30°,故选C.9.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④【考点】等腰三角形的性质.【分析】顶角为:36°,90°,108°,的四种等腰三角形都可以用一条直线把这四个等腰三角形每个都分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选C.10.如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m﹣1)D.【考点】一次函数综合题;三角形的面积.【分析】设AD⊥y轴于点D;BF⊥y轴于点F;BG⊥CG于点G,然后求出A、B、C、D、E、F、G各点的坐标,计算出长度,利用面积公式即可计算出.【解答】解:由题意可得:A点坐标为(﹣1,2+m),B点坐标为(1,﹣2+m),C点坐标为(2,m﹣4),D点坐标为(0,2+m),E点坐标为(0,m),F点坐标为(0,﹣2+m),G点坐标为(1,m﹣4).所以,DE=EF=BG=2+m﹣m=m﹣(﹣2+m)=﹣2+m﹣(m﹣4)=2,又因为AD=BF=GC=1,所以图中阴影部分的面积和等于×2×1×3=3.故选B.二、填空题(共4小题,每小题5分,满分20分)11.已知y﹣2与x成正比例,当x=1时,y=5,那么y与x的函数关系式是y=3x+2.【考点】待定系数法求一次函数解析式.【分析】根据正比例函数的定义设y﹣2=kx(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.【解答】解:∵y﹣2与x成正比例函数,∴设y﹣2=kx(k≠0),将x=1,y=5代入得,k=5﹣2=3,所以,y﹣2=3
本文标题:安庆市2016-2017学年八年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7837596 .html