您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 碑林区西安市2015-2016学年八年级下期中数学试卷含答案解析
2015-2016学年陕西省碑林区西安市八年级(下)期中数学试卷一、选择题1.下列图形中是轴对称图形又是中心对称图形的是()A.B.C.D.2.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+13.下列变形正确的是()A.=x3B.=C.=x+yD.=﹣14.点P(﹣2,3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,6)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)5.已知正n边形的一个内角为144°,则边数n的值是()A.10B.9C.8D.66.已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BCB.AC=BDC.∠A=∠CD.∠A=∠B7.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3≤0的解为()A.x≤0B.x≥0C.x≥2D.x≤28.如图,平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=5,CE=4,则AB的长是()A.B.5C.D.39.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2B.﹣1或2C.1或2D.0或﹣210.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2B.3C.4D.5二、填空题11.已知平行四边形ABCD中,∠B=5∠A,则∠D=.12.若关于n的分式方程﹣=1的解是非负数,则m的取值范围是.13.已知a+b=2,则a2﹣b2+4b的值为.14.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.三、解答题15.分解因式:(1)3a2b﹣12ab2(2)x2﹣y2+6y﹣9.16.解分式方程:=﹣.17.如图,在方格网中已知格点△ABC和点O.(1)△A'B'C和△ABC关于点O成中心对称;(2)试探究以点A,O,C',D为顶点的四边形为平行四边形的D点有几个?请在方格网中标出所有D点的位置.(只标注出D点的位置,不需要画出平行四边形).18.解不等式组.19.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?20.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°.分别以直角边AC和斜边AB向外作等边△ACD、等边△ABE.过点E,作EF⊥AB,垂足为F,连结DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形.21.已知三个数x,y,z满足=﹣3,=,,求的值.22.操作探究.(1)如图①,点A,B分别在直线l1,l2上,点P是线段AB的中点,过点P做一条直线,做一条直线,分别交l1,l2于点C,D,使△APC与△BPD的面积相等.(2)如图②,在△ABC中,过AC边的中点P任意作直线EF,交BC边于点F,交BA的延长线于点F,是比较△PFC与△PAE的面积的大小,并说明理由.拓展应用(3)如图③,已知∠MON=60°,点P是∠MON内一点,PC⊥OM于点C,PC=3,OC=6.过点P作一条直线EF,使其分别交OM,ON于点E、F,试判断△EOF的面积是否存在最小值?若存在,求出此最小值;若不存在,请说明理由.2015-2016学年陕西省碑林区西安市八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;B、是轴对称图形,又是中心对称图形故此选项符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故此选项不合题意;D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故此选项不合题意.故选:B.2.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+1【考点】因式分解﹣提公因式法;因式分解﹣运用公式法.【分析】分别将各选项利用公式法和提取公因式法分解因式进而得出答案.【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.3.下列变形正确的是()A.=x3B.=C.=x+yD.=﹣1【考点】分式的基本性质.【分析】根据分式的基本性质进行约分即可.【解答】解:A、结果为x4,故本选项错误;B、不能约分,故本选项错误;C、不能约分,故本选项错误;D、结果是﹣1,故本选项正确;故选D.4.点P(﹣2,3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,6)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:根据题意,所得到的点的坐标为(﹣2﹣1,3+3),即(﹣3,6),故选:A.5.已知正n边形的一个内角为144°,则边数n的值是()A.10B.9C.8D.6【考点】多边形内角与外角.【分析】根据多边形的内角和公式和已知得出144°n=(n﹣2)×180°,求出即可.【解答】解:根据题意得:144°n=(n﹣2)×180°,解得:n=10,故选A.6.已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BCB.AC=BDC.∠A=∠CD.∠A=∠B【考点】平行四边形的判定.【分析】利用平行线的判定与性质结合平行四边形的判定得出即可.【解答】解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.7.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3≤0的解为()A.x≤0B.x≥0C.x≥2D.x≤2【考点】一次函数与一元一次不等式.【分析】从图象上知,直线y=kx+b的函数值y随x的增大而增大,与y轴的交点为B(0,﹣3),即当x=0时,y=﹣3,由图象可看出,不等式kx+b+3≤0的解集是x≤0.【解答】解:由kx+b+3≤0得kx+b≤﹣3,直线y=kx+b与y轴的交点为B(0,﹣3),即当x=0时,y=﹣3,由图象可看出,不等式kx+b+3≤0的解集是x≤0.故选A.8.如图,平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=5,CE=4,则AB的长是()A.B.5C.D.3【考点】平行四边形的性质.【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=∠ABC,∠DCE=∠BCE=∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=5,CE=4,∴BC===,∴AB=BC=;故选:A.9.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2B.﹣1或2C.1或2D.0或﹣2【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x(x+1),得x2﹣(m+1)=(x+1)2∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1,当x=0时,m=﹣2,当x=﹣1时,m=0,故m的值可能是﹣2或0.故选D.10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2B.3C.4D.5【考点】平行四边形的性质;垂线段最短;平行线之间的距离.【分析】由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【解答】解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB.∵四边形ADCE是平行四边形,∴OD=OE,OA=OC.∴当OD取最小值时,DE线段最短,此时OD⊥BC.∴OD∥AB.又点O是AC的中点,∴OD是△ABC的中位线,∴OD=AB=1.5,∴ED=2OD=3.故选B.二、填空题11.已知平行四边形ABCD中,∠B=5∠A,则∠D=150°.【考点】平行四边形的性质.【分析】根据题意画出图形,再根据∠B=5∠A得出∠B的度数,进而得出∠D的度数.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∠D=∠B,∵∠B=5∠A,∴6∠A=180°,解得∠A=30°,∴∠D=∠B=30°×5=150°°.故答案为:150°.12.若关于n的分式方程﹣=1的解是非负数,则m的取值范围是m≥﹣4且m≠﹣3.【考点】分式方程的解;解一元一次不等式.【分析】分式方程去分母转化为整式方程,由分式的解是非负数确定出m的范围即可.【解答】解:去分母得:m+3=x﹣1,解得:x=m+4,由分式方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m≥﹣4且m≠﹣3.故答案为:m≥﹣4且m≠﹣313.已知a+b=2,则a2﹣b2+4b的值为4.【考点】因式分解的应用.【分析】把所给式子整理为含(a+b)的式子的形式,再代入求值即可.【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.14.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1.【考点】旋转的性质;全等三角形的判定与性质;角平分线的性质;等边三角形的判定与性质;等腰直角三角形.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故答案为:1+.三、解答题15.分解因式:(1)3a2b﹣12
本文标题:碑林区西安市2015-2016学年八年级下期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7837780 .html