您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 德州市夏津县2015-2016学年八年级下期末数学试卷含答案解析
2015-2016学年山东省德州市夏津县八年级(下)期末数学试卷一、选择题1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.在函数y=中,自变量x的取值范围是()A.x≤1且x≠﹣2B.x≤1C.x<1且x≠﹣2D.x>1且x≠2.3.下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③4.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:65.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4B.3C.D.26.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1B.众数是﹣1C.中位数是0.5D.方差是3.57.顺次连接矩形ABCD各边中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D.菱形8.已知函数y=(2m+1)x+m﹣3,若这个函数的图象不经过第二象限,则m的取值范围是()A.m>﹣B.m<3C.﹣<m<3D.﹣<m≤39.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.810.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3C.x>D.x>311.已知(a+3)2+=0,则一次函数y=ax+b的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.如图,在矩形ABCD中,AB=6cm,BC=4cm.动点E从点B出发,沿着线路BC→CD→DA运动,在BC段的平均速度是1cm/s,在CD段的平均速度是2cm/s,在DA段的平均速度是4cm/s,到点A停止.设△ABE的面积为y(cm2),则y与点E的运动时间t(s)的函数关系图象大致是()A.B.C.D.二、填空题(本题共5小题,每小题4分,满分20分)13.实数a,b在数轴上的位置如图所示,那么化简|a﹣b|﹣的结果是.14.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.15.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是.16.某一次函数的图象经过点(1,﹣2),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是,点Bn的坐标是.三、解答题(本大题共7小题,共64分)18.(1)计算:|2﹣3|﹣+(2)已知x=+1,y=﹣1,求代数式x2﹣y2的值.19.“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:序号123456笔试成绩669086646584专业技能测试成绩959293808892说课成绩857886889485(1)笔试成绩的极差是多少?(2)写出说课成绩的中位数、众数;(3)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?20.如图在四边形ABCD中,AB=BC=2,CD=3,DA=1,且∠B=90°,求∠DAB的度数.21.已知:如图,AE∥BF,AC平分∠BAD,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.求证:四边形ABCD是菱形.22.请叙述三角形的中位线定律,并证明.23.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.24.阅读1:a、b为实数,且a>0,b>0因为(﹣)2≥0,所以a﹣2+b≥0从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+;(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:已知函数y1=x+1(x>﹣1)与函数y2=x2+2x+10(x>﹣1),当x=时,的最小值为.2015-2016学年山东省德州市夏津县八年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A不是最简二次根式;B、被开方数含分母,故B不是最简二次根式;C、是最简二次根式;D、被开方数含能开得尽方的因数或因式,故D不是最简二次根式;故选:C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.在函数y=中,自变量x的取值范围是()A.x≤1且x≠﹣2B.x≤1C.x<1且x≠﹣2D.x>1且x≠2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得,1﹣x≥0且x+2≠0,解得x≤1且x≠﹣2.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③【考点】二次根式的性质与化简;二次根式有意义的条件.【分析】本题考查的是二次根式的意义:①=a(a≥0),②=a(a≥0),逐一判断.【解答】解:①==4,正确;②=(﹣1)2=1×4=4≠16,不正确;③=4符合二次根式的意义,正确;④==4≠﹣4,不正确.①③正确.故选:D.【点评】运用二次根式的意义,判断等式是否成立.4.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【考点】勾股定理的逆定理;三角形内角和定理.【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.【点评】本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4B.3C.D.2【考点】三角形中位线定理;含30度角的直角三角形.【分析】先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选D.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.6.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1B.众数是﹣1C.中位数是0.5D.方差是3.5【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是=0.5;这组数据的方差是:[(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;则下列结论不正确的是D;故选D.【点评】此题考查了方差、平均数、众数和中位数,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.顺次连接矩形ABCD各边中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D.菱形【考点】中点四边形.【分析】作出图形,根据三角形的中位线定理可得EF=GH=AC,FG=EH=BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.【解答】解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故选:D.【点评】本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.8.已知函数y=(2m+1)x+m﹣3,若这个函数的图象不经过第二象限,则m的取值范围是()A.m>﹣B.m<3C.﹣<m<3D.﹣<m≤3【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象不经过第二象限列出关于m的不等式组,求出m的取值范围即可.【解答】解:∵一次函数y=(2m+1)x+m﹣3,的图象不经过第二象限,∴,解得:﹣<m≤3.故选D.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数的图象经过一三四象限是解答此题的关键.9.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.8【考点】直角三角形斜边上的中线;勾股定理.【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【解答】解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选D.【点评】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3C.x
本文标题:德州市夏津县2015-2016学年八年级下期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7838205 .html