您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 广东省湛江市2017-2018学年八年级下期末考试数学试题含答案
2017-2018学年广东省湛江市八年级(下)期末数学试卷一、用心选一选(本题有10个小题,每小题3分,共30分.)1.使式子有意义的条件是()A.x≥4B.x=4C.x≤4D.x≠42.已知一次函数y=2x+b,其中b<0,它的函数图象可能是()3.直角三角形的两直角边长分别为6和8,则斜边上的中线长是()A.10B.2.5C.5D.84.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.105.如图,在菱形ABCD中,AC与BD相交于点O,AC=6,BD=8,则菱形边长AB等于()A.10B.C.5D.66.“古诗•送郎从军:送郎一路雨飞池,十里江亭折柳枝;离人远影疾行去,归来梦醒度相思.”中,如果用纵轴y表示从军者与送别者行进中离原地的距离,用横轴x表示送别进行的时间,从军者的图象为O→A→B→C,送别者的图象为O→A→B→D,那么下面的图象与上述诗的含义大致吻合的是()7.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是()A.极差是7B.众数是8C.中位数是8.5D.平均数是98.关于一次函数y=x﹣1,下列说法:①图象与y轴的交点坐标是(0,﹣1);②y随x的增大而增大;③图象经过第一、二、三象限;④直线y=x﹣1可以看作由直线y=x向右平移1个单位得到.其中正确的有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6B.3C.12D.10.如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形AnBnCnDn的面积是.A.①②B.②③C.②③④D.①②③④二、耐心填一填(本题有6个小题,每小题4分,共24分,)11.若最简二次根式与是同类二次根式,则a=.12.若3,4,a和5,b,13是两组勾股数,则a+b的值是.13.在矩形ABCD中,AB=6cm,BC=8cm,则点A到对角线BD的距离为.14.已知关于x的方程ax﹣5=7的解为x=1,则一次函数y=ax﹣12与x轴交点的坐标为.15.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.16.如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AC的中点,若AB=6,则DE的长为.三、细心答一答(本题有3小题,每小题6分,共18分.)17.计算:6﹣5﹣+3.18.已知一次函数y=kx+b的图象经过点(﹣1,﹣5)和(2,1),求一次函数的解析式.19.如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?四、细心答一答(本题有3小题,每小题7分,共21分.)20.(7分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.21.(7分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)707809011008(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.22.(7分)已知求代数式:x=2+,y=2﹣.(1)求代数式x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?五、细心答一答(本题有3小题,每小题9分,共27分.)23.(9分)某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:品种购买价(元/棵)成活率A2890%B4095%设种植A种树苗x棵,承包商获得的利润为y元.(1)求y与x之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?24.(9分)如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.25.(9分)如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.2017-2018学年广东省湛江市八年级(下)期末数学试卷参考答案一、用心选一选(本题有10个小题,每小题3分,共30分.)1-5:AACAC6-10:CBCBC二、耐心填一填(本题有6个小题,每小题4分,共24分,)11.4.12.17.13.4.8cm.14.(1,0).15.a<c<b.16.3.三、细心答一答(本题有3小题,每小题6分,共18分.)17.解:原式=(6﹣5)+(﹣1+3)=+2.18.解:∵一次函数y=kx+b经过点(﹣1,﹣5)和(2,1),∴,解得:,∴这个一次函数的解析式为y=2x﹣3.19.解:如图所示:由题意可得,AB=5m,AC=13m,在Rt△ABC中,BC==12(m),答:这条缆绳在地面的固定点距离电线杆底部12m.四、细心答一答(本题有3小题,每小题7分,共21分.)20.解:结论:BE∥DF,BE=DF.理由:连接BD,交AC于点O,连接DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF.∴EO=FO.∴四边形BEDF是平行四边形.∴BE∥DF,BE=DF.21.解:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,=85;(4)∵S甲2<S乙2,∴甲校20名同学的成绩比较整齐.22.解:(1)∵x=2+,y=2﹣.∴x+y=4,xy=2,∴x2+3xy+y2=(x+y)2+xy=16+2=18.(2)菱形的面积=×(2+)(2﹣)=1.五、解:(1)由题意可得,y=150000﹣28x﹣40(3000﹣x)=30000+12x,即y与x之间的函数关系式是y=12x+30000;(2)由题意可得,90%x+95%(3000﹣x)≥3000×93%,解得,x≤1200,∵y=12x+30000,∴当x=1200时,y取得最大值,此时y=44400,即承包商购买A种树苗1200棵,B种树苗1800棵时,能获得最大利润,最大利润是44400元.24.解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8AB=10,∵AB'=AB=10,∴OB'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴M的坐标为:(0,3),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=﹣x+3.25.解:(1)∵MN∥BC,∴∠3=∠2,又∵CF平分∠GCO,∴∠1=∠2,∴∠1=∠3,∴FO=CO,同理:EO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,由(1)可知,FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC,∴∠AOE=∠ACB∵∠ACB=90°,∴∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.
本文标题:广东省湛江市2017-2018学年八年级下期末考试数学试题含答案
链接地址:https://www.777doc.com/doc-7838628 .html