您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 贵州省平安学校2014年八年级下数学期中测试卷
1A0-1-21平安学校八年级下册数学期中试题(考试时间:120分钟试卷满分:150分)一、选择题(共12小题,每小题4分,共48分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.1、计算24-38的结果是().A.2B.±2C.-2或0D.0.2、如图,把矩形ABCD沿EF对折后使两部分重合,若150,则AEF=()A.110°B.115°C.120°D.130°3、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm24、下列各式不是最简二次根式的是()A.21aB.21xC.24bD.0.1y5、已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为().A.6cmB.4cmC.3cmD.2cm6、给出下列几组数:①6,7,8;②8,15,6;③n2-1,2n,n2+1;④21,21,6.其中能组成直角三角形三条边长的是()A.①③B.②④C.①②D.③④7、如图,正方形ABCD中,以对角线AC为一边作菱形AEFC,则∠FAB等于()A.22.5°B.45°C.30°D.135°8、若0x1,则(x-1x)2+4-(x+1x)2-4等于()A.2xB.-2xC.-2xD.2x9、如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM≌△CFN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④10、小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为().A.2mB.2.5cmC.2.25mD.3m11、如图,数轴上的点A所表示的数为x,则x2—10的立方根为()A.2-10B.-2-10C.2D.-212、已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()第2题12题ABCDEFMNOA.①③④B.①②⑤C.③④⑤D.①③⑤二、填空题(共6小题,每小题4分,共24分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.13、(-4)2的算术平方根是______,25的平方根是______.14、分式x+2x-1中x的取值范围是。15、如图,在四边形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=32,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为。16、已知322xxy,则xy-364的值为。17、如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于。18、现安排一批工人完成一项工作,如果这批工人同时开始工作,且每个人工作效率相同,则9小时完工;如果开始先安排1人做,以后每隔t小时(t为整数)增加1人,且每个人都一直做到工作完成,结果最后一个人做的时间是第1人时间的15,则第一个人做的时间是小时。三、解答题(共8小题,共78分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.19、(7分)计算:313×(―1248)-(-12)-2+[(-1)2014+(3-2)0-|3-2|]÷1220、(7分)已知:如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.21、(10分)先化简,再求值:已知13x,求xxxxxxx112122的值.22、(10分)如图,在□ABCD中,点E、F在BD上,且BF=DE.(1)写出图中所有你认为全等的三角形;17题15题(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.23、(10分)如图,在∠ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点;(1)求证:四边形BDEF是菱形;(2)若AB=cm12,求菱形BDEF的周长.24、(10分)如图,已知矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F,FG∥DA与AB交于点G.⑴求证:BF=BC;⑵若AB=4cm,AD=3cm,求CF.25.(12分)如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作□APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).(1)求证:∠EAP=∠EPA;(2)□APCD是否为矩形?请说明理由;(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.ABCDEFGCBADPE图126、(12分)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当CE1CBn时,求ABCDDEFGSS正方形正方形的值.CBADPE图2NMNF
本文标题:贵州省平安学校2014年八年级下数学期中测试卷
链接地址:https://www.777doc.com/doc-7838823 .html