您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 聊城市2017-2018学年八年级下期末考试数学试题(含答案解析)
2017-2018学年山东省聊城市八年级(下)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求1.如图图案中,不是中心对称图形的是()2.如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是()A.a<1B.a<﹣1C.a>1D.a>﹣13.等式成立的条件是()4.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=nB.若a2>b2,则a>bC.若,则a=bD.若,则a=b5.如图,在矩形ABCD中,AB=8,BC=6,EF经过对角线的交点O,则图中阴影部分的面积是()A.6B.12C.15D.246.若的值用a、b可以表示为()7.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1B.2C.3D.48.若不等式组的解集为﹣1<x<1,则(a﹣3)(b+3)的值为()A.1B.﹣1C.2D.﹣29.以下是某市自来水价格调整表(部分):(单位:元/立方米)用水类别现行水价拟调整水价一、居民生活用水0.721、一户一表第一阶梯:月用水量0~30立方米/户0.82第二阶梯:月用水量超过30立方米/户部分1.23则调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图象是()10.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的和最小值为()11.如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为()12.如图,两直线y1=kx+b和y2=bx+k在同一坐标系内图象的位置可能是()二、填空题(本题共6个小题,每小题4分,共24分,只要求写出最后结果13.m,n分别是﹣1的整数部分和小数部分,则2m﹣n=.14.若最简二次根式和是同类二次根式,则m=.15.点A(x1,y1)、B(x2,y2)在一次函数y=﹣2x+b的图象上,若x1<x2,则y1y2(填“<”或“>”或“=”).16.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动米.17.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为.三、解咨题(本大题共6个小题共60分.解答要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:20.(10分)解不等式组,并在数轴上把解集表示出来.21.(10分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.22.(10分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.23.(10分)某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?24.(12分)如图,直线与x轴相交于点A,与直线相交于点P.(1)求点P的坐标.(2)请判断△OPA的形状并说明理由.(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求S与t之间的函数关系式.2017-2018学年山东省聊城市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求1.如图图案中,不是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故A选项错误;B、是中心对称图形,故B选项错误;C、是中心对称图形,故C选项错误;D、不是中心对称图形,故D选项正确;故选:D.2.如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是()A.a<1B.a<﹣1C.a>1D.a>﹣1【考点】C2:不等式的性质.【分析】根据不等式的基本性质进行计算即可.【解答】解:(a+1)x<a+1,当a+1<0时x>1,所以a+1<0,解得a<﹣1,故选:B.3.等式=成立的条件是()A.x>B.x≥C.x>2D.≤x<2【考点】75:二次根式的乘除法.【分析】直接利用二次根式的性质得出关于x的不等式进而求出答案.【解答】解:∵等式=成立,∴,解得:x>2.故选:C.4.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=nB.若a2>b2,则a>bC.若=()2,则a=bD.若=,则a=b【考点】27:实数.【分析】A、根据绝对值的性质即可判定;B、根据平方运算的法则即可判定;C、根据算术平方根的性质即可判定;D、根据立方根的定义即可解答.【解答】解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=﹣3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.5.如图,在矩形ABCD中,AB=8,BC=6,EF经过对角线的交点O,则图中阴影部分的面积是()A.6B.12C.15D.24【考点】LB:矩形的性质.【分析】易证△AOE≌△COF,则阴影部分的面积为△CDO的面积,根据矩形对角线分成的四部分面积相等,即可计算阴影部分的面积,即可解题.【解答】解:在△AOE和△COF中,∠EAO=∠FCO,AO=CO,∠COF=∠EOA,∴△AOE≌△COF,则△AOE和△COF面积相等,∴阴影部分的面积与△CDO的面积相等,又∵矩形对角线将矩形分成面积相等的四部分,∴阴影部分的面积为=12.故选:B.6.若=a,=b,则的值用a、b可以表示为()A.B.C.D.【考点】75:二次根式的乘除法.【分析】,化简即可.【解答】解:=.故选:C.7.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1B.2C.3D.4【考点】KQ:勾股定理.【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.8.若不等式组的解集为﹣1<x<1,则(a﹣3)(b+3)的值为()A.1B.﹣1C.2D.﹣2【考点】CB:解一元一次不等式组.【分析】解不等式组后根据解集为﹣1<x<1可得关于a、b的方程组,解方程组求得a、b的值,代入代数式计算可得.【解答】解:解不等式2x﹣a<1,得:x<,解不等式x﹣2b>3,得:x>2b+3,∵不等式组的解集为﹣1<x<1,∴,解得:a=1,b=﹣2,当a=1,b=﹣2时,(a﹣3)(b+3)=﹣2×1=﹣2,故选:D.9.以下是某市自来水价格调整表(部分):(单位:元/立方米)用水类别现行水价拟调整水价一、居民生活用水0.721、一户一表第一阶梯:月用水量0~30立方米/户0.82第二阶梯:月用水量超过30立方米/户部分1.23则调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】根据水费等于单价乘用水量,30立方米内单价低,水费增长的慢,超过30立方米的部分水费单价高,水费增长快,可得答案.【解答】解:30立方米内每立方是0.82元,超过30立方米的部分每立方是1.23元,调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图象先增长慢,后增长快,B符合题意,故选:B.10.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的和最小值为()A.B.4C.3D.【考点】LE:正方形的性质;PA:轴对称﹣最短路线问题.【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=4,又∵△ABE是等边三角形,∴BE=AB=4.故选:B.11.如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】R2:旋转的性质.【分析】设D′C′与BC的交点为E,连接AE,利用“HL”证明Rt△AD′E和Rt△ABE全等,根据全等三角形对应角相等∠BAE=∠D′AE,再根据旋转角求出∠BAD′=60°,然后求出∠BAE=30°,再解直角三角形求出BE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ABED′的面积,列式计算即可得解.【解答】解:如图,D′C′与BC的交点为E,连接AE,在Rt△AD′E和Rt△ABE中,∵,∴Rt△AD′E≌Rt△ABE(HL),∴∠BAE=∠D′AE,∵旋转角为30°,∴∠BAD′=60°,∴∠BAE=×60°=30°,∴BE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.12.如图,两直线y1=kx+b和y2=bx+k在同一坐标系内图象的位置可能是()A.B.C.D.【考点】F3:一次函数的图象.【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b>0,y2=bx+k中,b>0,k<0,符合;B、由图可得,y1=kx+b中,k>0,b>0,y2=bx+k中,b<0,k>0,不符合;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0
本文标题:聊城市2017-2018学年八年级下期末考试数学试题(含答案解析)
链接地址:https://www.777doc.com/doc-7839536 .html