您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 漯河市召陵区2015-2016学年八年级上期中数学试卷含答案解析
2015-2016学年河南省漯河市召陵区八年级(上)期中数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.下面所给的交通标志是轴对称图形的是()A.B.C.D.2.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°3.下列说法错误的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等4.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm5.若一个多边形的内角和为900°,则从这个多边形的其中一个顶点出发引的对角线的条数为()A.4B.5C.6D.76.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的E处.若∠A=23°,则∠BDC等于()A.46°B.60°C.68°D.77°7.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3B.5C.6D.不能确定8.如图,在△ABC中,AB=AC,D为AC上一点,E为AB上一点,且BC=BD,AD=DE=BE,那么∠A的度数为()A.36°B.45°C.60°D.75°二、填空题(本题共10小题,每小题3分,共30分)9.等腰三角形中,如果一个外角为130°,那么这个等腰三角形的顶角的度数为.10.如果点P关于x轴的对称点为(﹣3,﹣2),那么点P关于y轴的对称点的坐标为.11.一个三角形的周长为48cm,最大边与最小边的差为14cm,另一边与最小边之和为25cm,那么这个三角形最小边的长为.12.如图,将△ABC绕点C顺时针方向旋转50°得到△A′CB′,若AC⊥A′B′,连接AA′,则∠BAC等于.13.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.15.如图,在△ABC中,E是BC上一点,EC=2BE,点D是AC的中点,若S△ABC=15,则S△ADF﹣S△BEF=.16.如图,在△ABC中,按以下步骤作图:①分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为.17.如图,△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D,CE是∠ACB的平分线,且交AD于P点.如果AP=2,则AB的长为.18.如图,P为∠AOB的平分线上的一点,PC⊥OA于点C,D为OA上一点,E为OB上一点,∠ODP+∠OEP=180°,当OC=6.5cm时,OD+OE=.三、解答题(本大题共7小题,共66分)19.如图,已知△ABC,请你在这个三角形内求作一点P,使PA=PB,且点P到边AB、BC的距离也相等(写出作法,保留作图痕迹).20.如图,完成下列各题:(1)画出△ABC关于x轴的对称△A1B1C1,并写出点A1、B1、C1的坐标;(2)写出△ABC的面积(不要求过程).21.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)22.如图,已知AB=CD,∠A=∠D,求证:△ABC≌△DCB.23.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E在同一直线上,连结BD.(1)求证:BD=EC;(2)BD与CE有何位置关系?请证你的猜想.24.如图,已知△ABC为等边三角形,AE=CD,AD、BE相交于点F.(1)求证:△ABE≌△CAD;(2)若BP⊥AD于点P,PF=9,EF=3,求AD的长.25.如图,在△ABC中,AB=AC,BE⊥AC于点E,BE=AE,AD是∠BAC的角平分线,和BE相交于点P,和BC边交于点D,点F是AB边的中点,连结EF,交AD于点Q,连结BQ.(1)求证:△BCE≌△APE;(2)求证:BD=AP;(3)判断△BDQ的形状,并证明你的结论.2015-2016学年河南省漯河市召陵区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.下面所给的交通标志是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选A.2.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°【考点】三角形的外角性质;平行线的性质.【分析】利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.【解答】解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.3.下列说法错误的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等【考点】全等图形.【分析】根据全等图形概念和性质对各个选项进行判断即可.【解答】解:全等三角形的三条边相等,三个角也相等,A正确;判定两个三角形全等的条件中至少有一个是边,B正确;面积相等的两个图形不一定是全等形,C错误;全等三角形的面积和周长都相等,D正确,故选:C.4.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.【解答】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选C.5.若一个多边形的内角和为900°,则从这个多边形的其中一个顶点出发引的对角线的条数为()A.4B.5C.6D.7【考点】多边形内角与外角;多边形的对角线.【分析】根据题意和多边形内角和公式求出多边形的边数,根据多边形的对角线的条数的计算公式计算即可.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=900°,解得,n=7,从七边形的其中一个顶点出发引的对角线的条数:7﹣3=4,故选:A.6.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的E处.若∠A=23°,则∠BDC等于()A.46°B.60°C.68°D.77°【考点】翻折变换(折叠问题).【分析】在△ABC中,先求得∠B=67°,由翻折的性质可知∠DEC=67°,由∠A+∠ADE=∠DEC可求得∠ADE=44°,然后根据∠BDC=求解即可.【解答】解:∵∠A+∠B=90°,∴∠B=90°﹣23°=67°.由翻折的性质可知:∠B=∠DEC=67°,∠BDC=∠EDC.∵∠A+∠ADE=∠DEC,∴∠EDA=67°﹣23°=44°.∴∠BDC===68°.故选:C.7.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3B.5C.6D.不能确定【考点】角平分线的性质;平行线之间的距离.【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故选:C.8.如图,在△ABC中,AB=AC,D为AC上一点,E为AB上一点,且BC=BD,AD=DE=BE,那么∠A的度数为()A.36°B.45°C.60°D.75°【考点】等腰三角形的性质.【分析】根据DE=BE,得到∠EBD=∠EDB=α,根据外角的性质得到∠AED=∠EBD+∠EDB=2α,根据等腰三角形的性质得到∠A=∠AED=2α,于是得到∠BDC=∠A+∠ABD=3α,由于∠ABC=∠C=∠BDC=3α,根据三角形的内角和列方程即可得到结论.【解答】解:∵DE=BE,∴∠EBD=∠EDB,设∠EBD=∠EDB=α,∴∠AED=∠EBD+∠EDB=2α,∵AD=DE,∴∠A=∠AED=2α,∴∠BDC=∠A+∠ABD=3α,∵BD=BC,AB=AB,∴∠ABC=∠C=∠BDC=3α,∴3α+3α+2α=180°,∴α=22.5°,∴∠A=45°.故选:B.二、填空题(本题共10小题,每小题3分,共30分)9.等腰三角形中,如果一个外角为130°,那么这个等腰三角形的顶角的度数为50°或80°.【考点】等腰三角形的性质.【分析】等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【解答】解:∵一个外角为130°,∴三角形的一个内角为50°,当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.10.如果点P关于x轴的对称点为(﹣3,﹣2),那么点P关于y轴的对称点的坐标为(3,2).【考点】关于x轴、y轴对称的点的坐标.【分析】分别利用关于x,y轴对称点的性质得出点的坐标即可.【解答】解:∵点P关于x轴的对称点为(﹣3,﹣2),∴P(﹣3,2),∴点P关于y轴的对称点的坐标为:(3,2).故答案为:(3,2).11.一个三角形的周长为48cm,最大边与最小边的差为14cm,另一边与最小边之和为25cm,那么这个三角形最小边的长为9cm.【考点】三元一次方程组的应用;三角形三边关系.【分析】设三角形的最长边为a,最小边为b,另一边为c,根据三角形的周长为48cm,得出a+b+c=48,再根据最大边与最小边的差为14cm,得出a﹣b=14,最后根据另一边与最小边之和为25cm,得出c+b=25,然后组成方程组求解即可.【解答】解:设三角形的最长边为a,最小边为b,另一边为c,根据题意得:,②+③得:a+c=39④,把④代入①得:b=9,则这个三角形最小边的长为9cm;故答案为:9cm.12.如图,将△ABC绕点C顺时针方向旋转50°得到△A′CB′,若AC⊥A′B′,连接AA′,则∠BAC等于40°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ACA′=50°,∠A=∠A′,则根据AC⊥A′B′,利用互余可计算出∠A′=40°,从而得到∠BAC的度数.【解答】解:∵△ABC绕点C顺时针方向旋转50°得到△A′CB′,∴∠ACA′=50°,∠A=∠A′,∵AC⊥A′B′,∴∠A′=90°﹣50°=40°,∴∠BAC=40°.故答案为40°.13.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠C=∠E(答案不惟一,也可以是AB=FD或AD=FB).【考点】全等三角形的判定.【分析】要判定△ABC≌△FDE,已知AC=FE,BC=DE,具备了两组边对应相等,故添加∠C=∠E,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠C=∠E,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等.(答案不唯一).故填:∠C=∠E.14.如图,在Rt△ABC中
本文标题:漯河市召陵区2015-2016学年八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7839677 .html