您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 莆田市荔城区2015-2016学年八年级上期中数学试卷含答案解析
2015-2016学年福建省莆田市荔城区八年级(上)期中数学试卷一、精心选一选:本大题共10小题,每小题4分,共40分.1.下列运算正确的是()A.(a2)3=a5B.a2+a4=a6C.a3÷a3=1D.(a3﹣a)÷a=a22.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm3.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.4.已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A.4B.5C.6D.不能确定5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC6.下列多边形材料中,不能单独用来铺满地面的是()A.三角形B.四边形C.正五边形D.正六边形7.能把一个三角形分成两个面积相等的三角形是三角形的()A.中线B.高线C.角平分线D.以上都不对8.三角形的三边长分别为5,1+2x,8,则x的取值范围是()A.2<x<5B.2.5<x<4.5C.1<x<6D.3<x<59.如图,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.180°C.255°D.145°10.如图:BO、CO是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为()A.80°B.90°C.120°D.140°二、细心填一填:本大题共6小题,每小题4分,共24分.11.分解因式:2x2﹣8=__________.12.若正n边形的一个外角为45°,则n=__________.13.若ax=2,bx=3,则(ab)3x=__________.14.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第__________块去.(填序号)15.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为__________cm.16.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为__________,(2)点C的坐标为__________.三、耐心做一做:本大题共10小题,共86分.17.计算:.[来源:学科网]18.先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=﹣2.19.已知m+n=8,mn=15,求m2﹣mn+n2的值.20.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y[来源:学科网]原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?__________(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.21.如图,已知:AB=DE且AB∥DE,BE=CF.求证:∠A=∠D.22.如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.23.在△ABC中,AD⊥BC,BE⊥AC,点D、E为垂足,AD与BE交于点H,BD=AD.求证:BH=AC.24.如图,∠AOB=90°,将三角尺的直角顶点落在∠AOB的平分线OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F.证明:PE=PF.25.已知△ABC与△CDE都是等腰直角三角形,∠ACB=90°,∠DCE=90°,连结BE,AD,相交于点F.求证:(1)AD=BE;(2)AD⊥BE.26.如图1所示,点E、F在线段AC上,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为点E,F;DE,BF分别在线段AC的两侧,且AE=CF,AB=CD,BD与AC相交于点G.(1)求证:EG=GF;(2)若点E在F的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.(3)若点E、F分别在线段CA的延长线与反向延长线上,其余条件不变,(1)中结论是否成立?(要求:在备用图中画出图形,直接判断,不必说明理由)2015-2016学年福建省莆田市荔城区八年级(上)期中数学试卷一、精心选一选:本大题共10小题,每小题4分,共40分.[来源:学科网]1.下列运算正确的是()A.(a2)3=a5B.a2+a4=a6C.a3÷a3=1D.(a3﹣a)÷a=a2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;整式的除法.【分析】利用幂的有关性质、合并同类型及整式的除法分别运算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误;B、a2+a4不能进行运算,因为二者不是同类项;C、a3÷a3=1,正确;D、(a3﹣a)÷a=a2﹣1,故错误,故选C.【点评】本题考查了幂的有关性质、合并同类型及整式的除法,解题的关键是能够熟练掌握有关幂的运算性质,难度不大.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.【点评】三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A.4B.5C.6D.不能确定【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求解即可.【解答】解:∵△ABC≌△DEF,∴DE=AB=4.故选A.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的对应边上的高、中线以及对应角的平分线相等.5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.下列多边形材料中,不能单独用来铺满地面的是()A.三角形B.四边形C.正五边形D.正六边形[来源:学+科+网]【考点】平面镶嵌(密铺).【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【解答】解:A、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B、角形内角和为360°,能整除360°,能密铺,故此选项不合题意;C、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意;故选:C.【点评】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.7.能把一个三角形分成两个面积相等的三角形是三角形的()A.中线B.高线C.角平分线D.以上都不对【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的两个三角形的面积相等解答.【解答】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点评】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键.8.三角形的三边长分别为5,1+2x,8,则x的取值范围是()A.2<x<5B.2.5<x<4.5C.1<x<6D.3<x<5【考点】三角形三边关系;解一元一次不等式组.【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【解答】解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6,故选C.【点评】考查了三角形的三边关系,还要熟练解不等式,难度不大,属于基础题.9.如图,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.180°C.255°D.145°【考点】多边形内角与外角;三角形内角和定理.【分析】根据三角形内角和定理得出∠A+∠B=105°,进而利用四边形内角和定理得出答案.【解答】解:∵△ABC中,∠C=75°,∴∠A+∠B=105°,∴∠1+∠2=360°﹣105°=255°.故选:C.【点评】此题主要考查了多边形内角和定理,根据题意得出∠A+∠B的度数是解题关键.10.如图:BO、CO是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为()A.80°B.90°C.120°D.140°【考点】角平分线的定义;三角形内角和定理.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO、CO是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【解答】解:△ABC中,∠ABC+∠ACB=180°﹣∠A=180°﹣100°=80°,∵BO、CO是∠ABC,∠ACB的两条角平分线.∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=140°.故选D.【点评】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.二、细心填一填:本大题共6小题,每小题4分,共24分.11.分解因式:2x2﹣8=2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.12.若正n边形的一个外角为45°,则n=8.【考点】多边形内角与外角.【分析】根据正多边形的外角和的特征即可求出多边形的边数.【解答】解:n=360°÷45°=8.所以n的值为8.故答案为:8.【点评】本题考查多边形的外角和的特征:多边形的外角和等于360°,是基础题型.13.若ax=2,bx=3,则(ab)3x=216.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则化简进而将已知代入求出答案即可.【解答】解:∵ax=2,bx=3,∴(ab)3x=(axbx)3=(2×3)3=216.故答案为:216.【点评】此题主要考查了幂的乘方与积的乘方运算,正确掌握积的乘方运算法则是解题关键.14.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第③块去.(填序号)【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.
本文标题:莆田市荔城区2015-2016学年八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7839830 .html