您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 泉州市南安市2017届九年级下第一次月考数学试卷含答案解析
2016-2017学年福建省泉州市南安市东田中学九年级(下)第一次月考数学试卷一、选择题1.如图,在⊙O中,∠ACB=34°,则∠AOB的度数是()A.17°B.34°C.56°D.68°2.二次函数y=x2的图象是()A.线段B.直线C.抛物线D.双曲线3.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是()A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度4.下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查5.抛物线y=(x+1)2+2的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣26.若圆锥的侧面展开图的弧长为24πcm,则此圆锥底面的半径为()cm.A.6B.6πC.12D.12π7.抛物线不具有的性质是()A.开口向下B.对称轴是y轴C.当x>0时,y随x的增大而减小D.函数有最小值8.如图,四边形ABCD内接于圆,则该圆的圆心可以这样确定()A.线段AC,BD的交点即是圆心B.线段BD的中点即是圆心C.∠A与∠B的角平分线交点即是圆心D.线段AD,AB的垂直平分线的交点即是圆心9.已知线段AB=4cm,过点B作BC⊥AB,且BC=2cm,连结AC,以C为圆心,CB为半径作弧,交AC于D;以A为圆心,AD为半径作弧,交AB于P,量一量线段AP的长,约为()A.2cmB.2.5cmC.3cmD.3.5cm10.世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也匀速走到点B,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心O的距离s随时间t变化的图象是()A.B.C.D.二、填空题11.如图,四边形ABCD是⊙O的内接四边形,若∠C=65°,则∠A=°.12.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该校被调查的学生中,打羽毛球的学生人数是人.13.如图,在△ABC中,AB=AC,∠B=40°,以B为圆心,BA的长为半径画弧,交BC于点D,连接AD,则∠DAC的度数是°.14.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表,则m的值为.x﹣2﹣101234y72﹣1﹣2m2715.如图,⊙O的半径为1,OA=2.5,∠OAB=30°,则AB与⊙O的位置关系是.16.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为.三、解答题(共86分)17.计算:|﹣2|﹣2cos60°+()﹣1﹣(π﹣)0.18.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.19.为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.20.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.21.如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1.(1)画出⊙P1;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A,B,求劣弧AB与弦AB围成的图形的面积(结果保留π).22.如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.23.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?24.已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.(1)求证:BC=CD;(2)求证:∠ADE=∠ABD;(3)设AD=2,AE=1,求⊙O直径的长.25.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.2016-2017学年福建省泉州市南安市东田中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.如图,在⊙O中,∠ACB=34°,则∠AOB的度数是()A.17°B.34°C.56°D.68°【考点】圆周角定理.【分析】欲求∠AOB,又已知一圆周角,可利用圆周角与圆心角的关系求解.【解答】解:∵∠AOB、∠ACB是同弧所对的圆心角和圆周角,∴∠AOB=2∠ACB=68°.故选D.【点评】此题主要考查的是圆周角定理:同弧所对的圆周角是圆心角的一半.2.二次函数y=x2的图象是()A.线段B.直线C.抛物线D.双曲线【考点】二次函数的图象.【专题】函数及其图象.【分析】根据函数图象的特点可知二次函数y=x2的图象的形状,本题得以解决.【解答】解:∵y=x2是二次函数,∴y=x2的图象是抛物线,故选C.【点评】本题考查二次函数的图象,解题的关键是明确二次函数图象的形状.3.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是()A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度【考点】全面调查与抽样调查;总体、个体、样本、样本容量.【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【解答】解:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误;B.在调查的400个家长中,有360个家长持反对态度,该校只有2500×=2250个家长持反对态度,故本项错误;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误;D.该校约有90%的家长持反对态度,本项正确,故选:D.【点评】本题考查了抽查与普查的定义以及用样本估计总体,这些是基础知识要熟练掌握.4.下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查【考点】全面调查与抽样调查.【专题】计算题;数据的收集与整理.【分析】利用普查与抽样调查的定义判断即可.【解答】解:A、对重庆市居民日平均用水量的调查,抽样调查;B、对一批LED节能灯使用寿命的调查,抽样调查;C、对重庆新闻频道“天天630”栏目收视率的调查,抽样调查;D、对某校九年级(1)班同学的身高情况的调查,全面调查(普查),则最适合采用全面调查(普查)的是对某校九年级(1)班同学的身高情况的调查.故选D【点评】此题考查了全面调查与抽样调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.抛物线y=(x+1)2+2的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2【考点】二次函数的性质.【分析】因为顶点式y=a(x﹣h)2+k,对称轴是x=h,所以抛物线y=(x+1)2+2的对称轴是x=﹣1.【解答】解:∵y=a(x﹣h)2+k,对称轴是x=h∴抛物线y=(x+1)2+2的对称轴是x=﹣1故选B.【点评】本题考查将二次函数的性质,解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.6.若圆锥的侧面展开图的弧长为24πcm,则此圆锥底面的半径为()cm.A.6B.6πC.12D.12π【考点】圆锥的计算;弧长的计算.【分析】利用扇形的弧长等于圆锥的底面周长列出等式求得圆锥的底面半径即可.【解答】解:设圆锥的底面半径为r,∵圆锥的侧面展开图的弧长为24πcm,∴2πr=24π,解得:r=12,故选C.【点评】本题考查了圆锥的计算,解题的关键是牢记扇形的弧长等于圆锥的底面周长.7.抛物线不具有的性质是()A.开口向下B.对称轴是y轴C.当x>0时,y随x的增大而减小D.函数有最小值【考点】二次函数的性质;二次函数的最值.【分析】根据二次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵a=﹣<0,∴此函数的图象开口向下,故本选项正确;B、∵抛物线y=﹣x2不的顶点在原点,∴对称轴是y轴,故本选项正确;C、当x>0时,抛物线在第四象限,y随x的增大而减小,故本选项正确;D、∵此函数的图象开口向下,∴函数有最大值,故本选项错误.故选D.【点评】本题考查的是二次函数的性质,熟知二次函数y=ax2(a≠0)的性质是解答此题的关键.8.如图,四边形ABCD内接于圆,则该圆的圆心可以这样确定()A.线段AC,BD的交点即是圆心B.线段BD的中点即是圆心C.∠A与∠B的角平分线交点即是圆心D.线段AD,AB的垂直平分线的交点即是圆心【考点】垂径定理;三角形的外接圆与外心.【分析】根据四边形ABCD的外接圆的圆心,就是△ABD的外接圆的圆心,即可判断.【解答】解:因为四边形ABCD的外接圆的圆心,就是△ABD的外接圆的圆心,所以线段AD、AB的垂直平分线的交点,是△ABD外接圆的圆心,即为四边形ABCD外接圆的圆心.故选D.【点评】本题考查三角形外接圆、四边形外接圆等知识,解题的关键是记住三角形外接圆的圆心是三角形两边的垂直平分线的交点,属于中考常考题型.9.已知线段AB=4cm,过点B作BC⊥AB,且BC=2cm,连结AC,以C为圆心,CB为半径作弧,交AC于D;以A为圆心,AD为半径作弧,交AB于P,量一量线段AP的长,约为()A.2cmB.2.5cmC.3cmD.3.5cm【考点】勾股定理.【分析】根据题意,作出图形.根据勾股定理求得AC的长度,则AP=AD=AC﹣CD.【解答】解:如图,AB=4cm,BC=2cm,BC⊥AB,在Rt△ABC中,由勾股定理,得AC==2cm.又∵CD=BC=2cm,∴AP=AD=AC﹣CD=2﹣2≈2.5cm.故选:B.【点评】本题考查了勾股定理.根据勾股定理求得斜边AC的长度是解题的关键.10.世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也匀速走到点B,紧接
本文标题:泉州市南安市2017届九年级下第一次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7839931 .html