您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 天津市和平区2015-2016学年八年级上期末数学试卷含答案解析
2015-2016学年天津市和平区八年级(上)期末数学试卷一、选择题(本大题并12小题,每小题3分,共36分.在毎小题给出的四个选項中,只有一項是符合题目要求的)1.将0.0000108用科学记数法表示应为()A.1.08×10﹣4B.1.08×10﹣5C.1.08×10﹣6D.10.8×10﹣62.如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°3.下列计算正确的是()A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+2y)(x﹣2y)=x2﹣2y2D.(﹣x+y)2=x2﹣2xy+y24.化简的结果是()A.B.C.D.5.如图,在直角三角形ABC中,∠C=90°,∠CAB的平分线ADD交BC于点D,若DE垂直平分AB,则下列结论中错误的是()A.AB=2AEB.AC=2CDC.DB=2CDD.AD=2DE6.下列计算正确的是()A.(﹣5b)3=﹣15b3B.(2x)3(﹣5xy2)=﹣40x4y2C.28x6y2+7x3y=4x2yD.(12a3﹣6a2+3a)÷3a=4a2﹣2a7.下列计算错误的是()A.(a﹣1b2)3=B.(a2b﹣2)﹣3=C.(﹣3ab﹣1)3=﹣D.(2m2n﹣2)2•3m﹣3n3=8.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30°B.45°C.60°D.90°9.如图,点A在BE上,且AC=AB,BD=CE.CE,BD交于点F,AC,BD交于点G.∠CAB=∠DFE.则AE等于()A.ADB.DFC.CE﹣ABD.BD﹣AB10.如图,点B,E,F,D在一条直线上,且DE=BF,点A,C在直线BD的两側,且AB=CD,AE=CF.连接AD,AF,CB,CE,则图中的全等三角形共有()A.4对B.5对C.6对D.7对11.如图,△ABC中,AC=AD,BC=BE,∠ACB=100°,则∠ECD=()A.20°B.30°C.40°D.50°12.一汽艇保持发动机功率不变,它在相距25千米的A,B两码头之间流动的河水中往返一次(其中汽艇的速度大于河水的速度)与它在平静的湖水中航行50千米比较,两次航行所用时间的关系是()A.在平静的湖水中用的时间少B.在流动的河水中用的时间少C.两种情况所用时间相等D.以上均有可能二、填空雇(本大题共6小题,每小题3分,共18分)13.当x__________时,分式有意义;当x__________时,分式有意义;当x__________时,分式有意义.14.分解因式:(1)4x2﹣9=__________;(2)x2+3x+2=__________;(3)2x2﹣5x﹣3=__________.15.如图,AC=BD,AC,BD交于点O,要使△ABC≌△DCB,只需添加一个条件,这个条件可以是__________.16.如果一个等腰三角形的周长为27,且两边的差为12,则这个等腰三角形的底边的长为__________.17.己知x=1+3m,y=1﹣9m,用含x的式子表示y为:y=__________.18.如图,△ABC中,∠ACB=60°,△ABC′,△BCA′,△CAB′都是△ABC形外的等边三角形,点D在边AC上,且DC=BC.连接DB,DB′,DC′.有下列结论:①CDB是等边三角形;②△C′BD≌△B′DC;③S△AC′D≠S△DB′A④S△ABC+S△ABC′=S△ACB′+S△A′BC其中,正确的结论有__________(请写序号,少选、错选均不得分)三、解答题(共6小题,共46分)19.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.20.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.(16分)计算:(1)(2x+1)(x+3)﹣6(x2+x﹣1)(2)(2x+y﹣6)(2x﹣y+6)(3)•(4)()2•+÷.22.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?23.分解因式:(1)(a﹣b)(a﹣4b)+ab(2)(a﹣b)(a2﹣ab+b2)+ab(b﹣a)24.已知,Rt△ABC中,∠ACB=90°,∠BAC=30°,分别以AB,AC为边在△ABC外侧作等边三角形ABE与等边三角形ACD.(1)如图①,求∠BAD的大小;(2)如图②,连接DE交AB于点F.求证:EF=DF.2015-2016学年天津市和平区八年级(上)期末数学试卷一、选择题(本大题并12小题,每小题3分,共36分.在毎小题给出的四个选項中,只有一項是符合题目要求的)1.将0.0000108用科学记数法表示应为()A.1.08×10﹣4B.1.08×10﹣5C.1.08×10﹣6D.10.8×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000108=1.08×10﹣5.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°【考点】平行线的性质.【专题】几何图形问题.【分析】首先根据两直线平行,内错角相等可得∠ABC=∠C=28°,再根据三角形内角与外角的性质可得∠AEC=∠A+∠ABC.【解答】解:∵AB∥CD,∴∠ABC=∠C=28°,∵∠A=45°,∴∠AEC=∠A+∠ABC=28°+45°=73°,故选:D.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角之和.3.下列计算正确的是()A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+2y)(x﹣2y)=x2﹣2y2D.(﹣x+y)2=x2﹣2xy+y2【考点】完全平方公式;平方差公式.【专题】计算题.【分析】根据完全平方公式,平方差公式,逐一检验.【解答】解:A、(x+y)2=x2+2xy+y2,故本选项错误;B、(x﹣y)2=x2﹣2xy+y2,故本选项错误;C、(x+2y)(x﹣2y)=x2﹣4y2,故本选项错误;D、(﹣x+y)2=(x﹣y)2=x2﹣2xy+y2,故本选项正确.故选:D.【点评】本题主要考查了对完全平方公式、平方差公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.4.化简的结果是()A.B.C.D.【考点】分式的混合运算.【分析】首先利用分式的加法法则计算括号内的式子,然后把除法转化成乘法,即可求解.【解答】解:原式=•=.故选A.【点评】本题考查了分式的混合运算,正确理解运算顺序,理解运算法则是关键.5.如图,在直角三角形ABC中,∠C=90°,∠CAB的平分线ADD交BC于点D,若DE垂直平分AB,则下列结论中错误的是()A.AB=2AEB.AC=2CDC.DB=2CDD.AD=2DE【考点】线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.【分析】根据线段的垂直平分线的性质,等腰三角形的性质,角平分线的性质求出求出∠CAD=∠BAD=∠B=30°,根据30°角的直角三角形的性质即可判断.【解答】解:∵DE垂直平分AB,∴AD=BD,AB=2AE,∴∠DAB=∠B,∵∠CAD=∠DAB=∠BAC,∴∠BAC=2∠B,∵∠C=90°,∴∠B=30°,∠BAC=60°,∴∠CAD=∠DAB=30°,∴AD=2CD,BD=AD=2DE,∵AD是∠CAB的平分线,DC⊥AC,DE⊥AB,∴DE=CD,∴BD=2CD,∵AD=2CD,AD>AC,∴AC≠2CD,故选B.【点评】本题考查了三角形的内角和定理,线段垂直平分线的性质,角平分线的性质,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.6.下列计算正确的是()A.(﹣5b)3=﹣15b3B.(2x)3(﹣5xy2)=﹣40x4y2C.28x6y2+7x3y=4x2yD.(12a3﹣6a2+3a)÷3a=4a2﹣2a【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据积的乘方等于乘方的积,单项式的乘法,合并同类项系数相加字母及指数不变,多项式除以单项式,可得答案.【解答】解:A、积的乘方等于乘方的积,故A错误;B、(2x)3(﹣5xy2)=8x3•(﹣5xy2)=﹣40x4y2,故B正确;C、不是同类项不能合并,故C错误;D、(12a3﹣6a2+3a)÷3a=4a2﹣2a+1,故D错误;故选:D.【点评】本题考查了整式的除法,熟记法则并根据法则计算是解题关键.7.下列计算错误的是()A.(a﹣1b2)3=B.(a2b﹣2)﹣3=C.(﹣3ab﹣1)3=﹣D.(2m2n﹣2)2•3m﹣3n3=【考点】负整数指数幂.【分析】首先利用积的乘方进行计算,再根据a﹣p=(a≠0,p为正整数)变负指数为正指数.【解答】解:A、(a﹣1b2)3=计算正确,故此选项错误;B、(a2b﹣2)﹣3=计算正确,故此选项错误;C、(﹣3ab﹣1)3=﹣计算错误,应为(﹣3ab﹣1)3=﹣27a3b﹣3=﹣,故此选项正确;D、(2m2n﹣2)2•3m﹣3n3=计算正确,故此选项错误;故选:C.【点评】此题主要考查了负整数指数幂,关键是掌握a﹣p=(a≠0,p为正整数).8.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30°B.45°C.60°D.90°【考点】等腰三角形的性质.【专题】计算题.【分析】根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=(180°﹣∠A)=(180°﹣30°)=75°,∵以B为圆心,BC的长为半径圆弧,交AC于点D,∴BC=BD,∴∠CBD=180°﹣2∠ACB=180°﹣2×75°=30°,∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°.故选:B.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.9.如图,点A在BE上,且AC=AB,BD=CE.CE,BD交于点F,AC,BD交于点G.∠CAB=∠DFE.则AE等于()A.ADB.DFC.CE﹣ABD.BD﹣AB【考点】全等三角形的判定与性质.【分析】根据已知条件和对顶角相等得到∠BAC=∠BFC,根据对顶角相等得到∠AGB=∠CGF,推出∠B=∠C,证得△ABD≌△ACE,根据全等三角形的性质即可得到结论.【解答】解:∵∠CAB=∠DFE,∠BFC=∠DFE,∴∠BAC=∠BFC,∵∠AGB=∠CGF,∴∠B=∠C,在△ABD与△ACE中,,∴△ABD≌△ACE,∴AE=AD.故选A.【点评】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.10.如图,点B,E,F,D在一条直线上,且DE=BF,点A,C在直线BD的两側,且AB=CD,AE=CF.连接AD,AF,CB,CE,则图中的全等三角形共有()A.4对B.
本文标题:天津市和平区2015-2016学年八年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7840717 .html