您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 武汉市武昌区部分学校2016届九年级上期末数学试卷含答案解析
2015-2016学年湖北省武汉市武昌区部分学校九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.方程2x2﹣3x+2=0的二次项系数和一次项系数分别为()A.3和﹣2B.2和﹣3C.2和3D.﹣3和22.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤13.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1B.y=﹣2(x+1)2+3C.y=﹣2(x﹣1)2+1D.y=﹣2(x﹣1)2+34.已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是()A.12πB.15πC.24πD.30π5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.86.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是()A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)7.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是()A.相离B.相切C.相交D.相切或相交8.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0B.(x﹣1)2=0C.(x+1)2=2D.(x﹣1)2=29.已知二次函数y=﹣(x+h)2,当x<﹣3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足h2﹣2h﹣3=0,则当x=0时,y的值为()A.﹣1B.1C.﹣9D.910.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.二、填空题(每小题3分,共18分)11.方程x2﹣2x﹣=0的判别式的值等于__________.12.抛物线y=﹣x2﹣2x+1的顶点坐标为__________.13.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为__________.14.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为__________.15.把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x,把第二次转动停止后指针指向的数字的2倍记作y,以长度分别为x、y、5的三条线段能构成三角形的概率为__________.(注:长度单位一致)16.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为__________.三、解答题(共8题,共72分)17.解方程:x(x﹣3)=4x+6.18.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.19.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=6,BD=3,求AE和BC的长.20.如图,在平面直角坐标系xOy中,△AOB三个顶点的坐标分别为O(0,0)、A(﹣2,3)、B(﹣4,2),将△AOB绕点O逆时针旋转90°后,点A、O、B分别落在点A′、O′、B′处.(1)在所给的直角坐标系xOy中画出旋转后的△A′O′B′;(2)求点B旋转到点B′所经过的弧形路线的长.21.某菜农搭建了一个横截面为抛物线的大棚,建立如图所示的直角坐标系后,抛物线的表达式为y=﹣x2+2.(1)若菜农的身高是1.60米,他在不弯腰的情况下,横向活动的范围是几米?(精确到0.01米)(2)大棚的宽度是多少?(3)大棚的最高点离地面几米?22.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)23.已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.24.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B(6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?2015-2016学年湖北省武汉市武昌区部分学校九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.方程2x2﹣3x+2=0的二次项系数和一次项系数分别为()A.3和﹣2B.2和﹣3C.2和3D.﹣3和2【考点】一元二次方程的一般形式.【分析】根据方程得出二次项系数和一次项系数即可.【解答】解:2x2﹣3x+2=0二次项系数为2,一次项系数为﹣3,故选B.【点评】本题考查了对一元二次方程的一般形式的应用,能理解题意是解此题的关键,注意:说各个项的系数带着前面的符号.2.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤1【考点】根的判别式.【分析】根据根的判别式,令△≥0,建立关于m的不等式,解答即可.【解答】解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1B.y=﹣2(x+1)2+3C.y=﹣2(x﹣1)2+1D.y=﹣2(x﹣1)2+3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】根据图象右移减,上移加,可得答案.【解答】解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.【点评】本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.4.已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是()A.12πB.15πC.24πD.30π【考点】圆锥的计算.【专题】计算题.【分析】先利用勾股定理计算出母线长,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长计算出圆锥的侧面积,然后计算侧面积与底面积的和即可.【解答】解:圆锥的母线长==5,所以这个圆锥的全面积=π•32+•2π•3•5=24π.故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.6.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是()A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:点M(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故选:D.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.7.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是()A.相离B.相切C.相交D.相切或相交【考点】直线与圆的位置关系.【专题】压轴题.【分析】作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.【解答】解:作CD⊥AB于点D.∵∠B=30°,BC=4cm,∴CD=BC=2cm,即CD等于圆的半径.∵CD⊥AB,∴AB与⊙C相切.故选:B.【点评】此题考查直线与圆的位置关系的判定方法.通常根据圆的半径R与圆心到直线的距离d的大小判断:当R>d时,直线与圆相交;当R=d时,直线与圆相切;当R<d时,直线与圆相离.8.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0B.(x﹣1)2=0C.(x+1)2=2D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.【点评】考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9.已知二次函数y=﹣(x+h)2,当x<﹣3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足h2﹣2h﹣3=0,则当x=0时,y的值为()A.﹣1B.1C.﹣9D.9【考点】二次函数的性质.【分析】根据h2﹣2h﹣3=0,求得h=3或﹣1,根据当x<﹣3时,y随x增大而增大,当x>0时,y随x增大而减小,从而判断h=3符合题意,然后把x=0代入解析式求得y的值.【解答】解:∵h2﹣2h﹣3=0,∴h=3或﹣1,∵当x<﹣3时,y随x增大而增大,当x>0时,y随x增大而减小,∴h=3符合题意,∴二次函数为y=﹣(x+3)2,当x=0时,y=﹣9.故选C.【点评】本题考查了二次函数的性质,根据题意确定h=3是解题的关键.10.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.【考点
本文标题:武汉市武昌区部分学校2016届九年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7840976 .html