您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 西安市碑林区2015-2016学年八年级下期末数学试卷含答案解析
2015-2016学年陕西省西安市碑林区八年级(下)期末数学试卷一、选择题1.若分式的值为0,则x的取值应满足是()A.x=﹣2B.x≠﹣2C.x=2D.x≠22.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30°B.40°C.50°D.70°3.下列不等式一定成立的是()A.a<2aB.a<a+2C.﹣a>﹣2aD.a+2>24.在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列因式分解正确的是()A.x(x+3)=x2+3xB.2n2﹣mn﹣n=2n(n﹣m﹣1)C.﹣x2﹣4y2+4xy=﹣(x﹣2y)2D.2x3﹣8x=2x(x2﹣4)6.一个多边形的每一个内角均为相邻外角的4倍,这个多边形的边数是()A.9B.10C.11D.127.如图,四边形ABCD中,AC=8,BD=6,且AC⊥BD,连接四边形ABCD各边中点得到四边形EFGH,下列说法正确的是()A.四边形EFGH是矩形B.四边形EFGH的周长是7C.四边形EFGH的面积是12D.四边形ABCD的面积是488.若关于x的方程﹣=1的解为正数,则m的取值范围是()A.m<4B.m>4C.m<4且m≠0D.m>4且m≠89.如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足F在线段AD上,连接EF.则下列结论一定成立的是()①∠FBC=90°;②点E是CD中点;③EF=EB;④S△EBF=S△EDF+S△EBC.A.①②B.③④C.①②③D.①②③④10.如图,四边形ABCD中,AB=AD,∠B+∠C=180°,若AC=12,则四边形ABCD的面积最大值为()A.36B.C.72D.二、填空题11.分解因式:a3﹣12a2+36a=.12.如图,点A的坐标为(0,6),将△OAB沿x轴向右平移得到△O'A'B',若点A的对应点A'落在直线y=2x﹣1上,则点B与其对应点间的距离为.13.已知一次函数y=ax+b的图象经过第二、三、四象限,与x轴的交点为(﹣2,0),则不等式ax﹣b<0的解集是.14.如图,正方形ABCD中,AB=2,点E是AB上一点,将正方形沿CE折叠,点B落在正方形内一点B'处,若△AB'D为等腰三角形,则BE的长度为.三、解答题15.解不等式组:,并将解集表示在数轴上.16.先化简,再求值:+(a﹣1﹣),其中a=2.17.解方程:=.18.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)19.我校为了创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.求文学和科普书的单价.20.在如图所示的正方形网格中,△ABC的顶点均在格点上,点A的坐标为(1,﹣1).(1)画出△ABC向左平移2个单位,然后再向上平移4个单位后的△A1B1C1,并写出点A1的坐标;(2)以M(﹣1,1)为对称中心,画出与△A1B1C1成中心对称的△A2B2C2,并求出以A1、C2、A2、C1为顶点的四边形的面积.21.已知:如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=8,AD=16,求MD的长.22.某电信公司有甲、乙两种手机收费业务,仅上网流量收费不同,图中I1、I2分别表示甲、乙两种业务每月流量费用y(元)与上网流量x(GB)的之间的函数关系.(1)分别求出甲、乙两种业务每月所收费用y元与上网流量x(GB)之间的函数关系式.(2)已知刘老师选择了甲业务,魏老师选择了乙业务,上月两位老师所用流量相同,均为mGB,上网流量费用相差不到20元,求m的取值范围.23.问题探究:(1)如图①,△ABC中,AB=AC=5,BC=6,点D在BC上,若AD平分△ABC的面积,请你画出线段AD,并计算线段AD的长度.(2)如图②,平行四边形ABCD中,AB=6,BC=8,∠B=60°,点M在AD上,点N在BC上,若MN平分平行四边形ABCD的面积,且线段MN的长度最短,请你画出符合要求的线段MN,并求出此时MN的长度.问题解决(3)如图③,四边形ABCD是规则中的商业区示意图,其中AD∥BC,∠B=90°,AD=1km,AB=2.4km,CD=2.6km,现计划在商业区内修一条笔直的单行道,入口M在AB上,出口N在BC上,使得MN将四边形ABCD分成面积相等的两部分,且MN的长度最短,你认为满足条件的MN是否存在?若存在,请求出MN的最短长度,并求出入口M和出口N与点B的距离;若不存在,请说明理由.2015-2016学年陕西省西安市碑林区八年级(下)期末数学试卷参考答案与试题解析一、选择题1.若分式的值为0,则x的取值应满足是()A.x=﹣2B.x≠﹣2C.x=2D.x≠2【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为零,进而得出答案.【解答】解:∵分式的值为0,∴x+2=0,解得:x=﹣2.故选:A.2.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30°B.40°C.50°D.70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质求出∠C,根据等腰三角形的性质得出∠B=∠C=70°,根据三角形内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,∵AD∥BC,∠1=70°,∴∠C=∠1=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣70°=40°,故选B.3.下列不等式一定成立的是()A.a<2aB.a<a+2C.﹣a>﹣2aD.a+2>2【考点】不等式的性质.【分析】根据不等式的性质,可得答案;【解答】解:A、a<0时,a>2a,故A不符合题意;B、0<2,两边都加a,不等号的方向不变,故B符合题意;C、a<0时,两边都乘以﹣a,不等号的方向不变,故C不符合题意;D、a<0时,两边都加2,不等号的方向不变,故D不符合题意;故选:D.4.在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形的概念与中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、既是轴对称图形又是中心对称图形,故A选项正确;B、是轴对称图形,但不是中心对称图形,故B选项错误;C、不是轴对称图形,是中心对称图形,故C选项错误;D、是轴对称图形,但不是中心对称图形,故D选项错误.故选:A.5.下列因式分解正确的是()A.x(x+3)=x2+3xB.2n2﹣mn﹣n=2n(n﹣m﹣1)C.﹣x2﹣4y2+4xy=﹣(x﹣2y)2D.2x3﹣8x=2x(x2﹣4)【考点】提公因式法与公式法的综合运用.【分析】利用因式分解的方法判断即可.【解答】解:A、原式不是因式分解,不符合题意;B、原式=n(2n﹣m﹣1),不符合题意;C、原式=﹣(x﹣2y)2,符合题意;D、原式=2x(x+2)(x﹣2),不符合题意,故选C6.一个多边形的每一个内角均为相邻外角的4倍,这个多边形的边数是()A.9B.10C.11D.12【考点】多边形内角与外角.【分析】一个内角是一个外角的3倍,内角与相邻的外角互补,因而外角是36度,内角是144度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:每一个外角的度数是180÷5=36度,360÷36=10,则多边形是10边形.故选B.7.如图,四边形ABCD中,AC=8,BD=6,且AC⊥BD,连接四边形ABCD各边中点得到四边形EFGH,下列说法正确的是()A.四边形EFGH是矩形B.四边形EFGH的周长是7C.四边形EFGH的面积是12D.四边形ABCD的面积是48【考点】中点四边形.【分析】利用三角形的中位线定理证得四边形EFGH为平行四边形,然后利用有一个角是直角的平行四边形是矩形可判断选项A是否正确;由AC=8,BD=6,且AC⊥BD,可求出四边形EFGH的面积,由此可判断选项CD是否正确;题目给出的数据求不出四边形EFGH的周长,所以选项B错误.【解答】解:∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=AC,GH=AC,∴EF=GH,同理EH=FG∴四边形EFGH是平行四边形;又∵对角线AC、BD互相垂直,∴EF与FG垂直.∴四边形EFGH是矩形,故选项A正确,符合题意;∵AC=8,BD=6,且AC⊥BD,∴四边形EFGH的面积=AC•BD=24,故选项CD错误,不符合题意;题目给出的数据求不出四边形EFGH的周长,所以选项B错误,不符合题意,故选A.8.若关于x的方程﹣=1的解为正数,则m的取值范围是()A.m<4B.m>4C.m<4且m≠0D.m>4且m≠8【考点】分式方程的解;解一元一次不等式.【分析】先将方程进行求解,然后利用x>0列出方程即可求出m的范围.【解答】解:去分母可得:x2+2x﹣m=x2﹣4∴x=∵x>0,∴>0,∴m>4又∵x2﹣4≠0,∴x≠±2,∴m≠0或8,∴m的范围为:m>4且m≠8,故选(D)9.如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足F在线段AD上,连接EF.则下列结论一定成立的是()①∠FBC=90°;②点E是CD中点;③EF=EB;④S△EBF=S△EDF+S△EBC.A.①②B.③④C.①②③D.①②③④【考点】平行四边形的性质;全等三角形的判定与性质;角平分线的性质.【分析】由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;由平行线的性质得到∠CEB=∠ABE,由角平分线的定义得到∠ABE=∠CBE,等量代换得到∠CEB=∠CBE,根据等腰三角形的判定得到CE=BE,等量代换得到CD=2CE,求得点E是CD中点;故②正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故③正确;由于S△BEF=S△BME,S△DFE=S△CME,于是得到S△EBF=S△BME=S△EDF+S△EBC.故④正确.【解答】解:∵BF⊥AD,∴∠AFB=90°,∵在平行四边形ABCD中,AD∥BC,∴∠AFB=∠CBF=90°,故①正确;∵CD∥AB,∴∠CEB=∠ABE,∵BE平分∠ABC交CD于点E,∴ABE=∠CBE,∴∠CEB=∠CBE,∴CE=BE,∵AB=2AD,∴CD=2BC,∴CD=2CE,∴点E是CD中点;故②正确;延长FE交BC的延长线与M,∴∠DFE=∠M,在△DFE与△CME中,,∴△DFE≌△CME,∴EF=EM=FM,∵∠FBM=90°,∴BE=FM,∴EF=BE,故③正确;∵EF=EM,∴S△BEF=S△BME,∵△DFE≌△CME,∴S△DFE=S△CME,∴S△EBF=S△BME=S△EDF+S△EBC.故④正确.故选D.10.如图,四边形ABCD中,AB=AD,∠B+∠C=180°,若AC=12,则四边形ABCD的面积最大值为()A.36B.C.72D.【考点】全等三角形的判定与性质;角平分线的性质.【分析】解:过A点分别作AE⊥BC于E,AF⊥CD于F,连接BD,根据全等三角形的性质得到AE=AF,S四边形ABCD=S四边形AECF,当四边形AECF的面积最大时,四边形AECF是正方形,根据正方形的性质得到EF=AC,EF⊥AC,于是得到结论.【解答】解:过A点分别作AE⊥BC于E,AF⊥CD于F,连接BD,∵∠ADF+∠ABC=180°,且∠ABE+∠ABC=180°,∴∠ADF=∠ABE,在△ABE与△ADF中,,∴△ABE≌△ADF,∴AE=AF,S四边形AB
本文标题:西安市碑林区2015-2016学年八年级下期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7841007 .html