您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 宿州市泗县2016-2017学年八年级上期中数学试卷含答案解析
安徽省宿州市泗县2016-2017学年八年级(上)期中数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.4、2、9D.5、12、132.下列各数:、0、、0.23、、、6.1010010001…,1﹣中无理数个数为()A.3个B.4个C.5个D.6个3.估计的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间4.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cmB.10cmC.14cmD.无法确定5.下列各式中,正确的是()A.B.C.D.6.如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(﹣2,3),则点P的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)7.下列计算正确的是()A.B.C.(2﹣)(2+)=1D.8.关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.9.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1B.3C.1D.﹣1或310.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或37二、填空题(共8小题,每小题4分,满分32分)11.的算术平方根是.12.如图,如果所在的位置坐标为(﹣1,﹣2),所在的位置坐标为(2,﹣2),则所在位置坐标为.13.比较下列实数的大小(在空格中填上>、<或=)①;②;③.14.如果M(m+3,2m+4)在y轴上,那么点M的坐标是.15.已知:一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是.16.P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+5图象上的两点,且x1<x2,则y1与y2的大小关系.17.若直角三角形的两条边长为a,b,且满足(a﹣3)2+|b﹣4|=0,则该直角三角形的第三条边长为.18.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,19.(12分)计算:(1)﹣(2)﹣(π﹣2)0﹣|1﹣|20.(10分)小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:(1)分别写出小金鱼身上点A、B、C、D、E、F的坐标;(2)小金鱼身上的点的纵坐标都乘以﹣1,横坐标不变.作出相应图形,它与原图案有怎样的位置关系?21.(10分)已知一次函数的图象经过A(0,2),B(﹣1,3)两点.求:(1)该直线解析式;(2)画出图象并求出△AOB的面积.22.(12分)如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直经AD折叠,使点C恰好与AB边上的点E重合,求出CD的长.23.(14分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过tmin时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?2016-2017学年安徽省宿州市泗县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.4、2、9D.5、12、13【考点】勾股定理的逆定理.【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、42+32=52,能够成直角三角形,故此选项错误;B、62+82=102,能构成直角三角形,故此选项错误;C、42+22≠92,不能构成直角三角形,故此选项正确;D、122+52=132,能构成直角三角形,故此选项错误.故选C.【点评】此题主要考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.下列各数:、0、、0.23、、、6.1010010001…,1﹣中无理数个数为()A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:、、6.1010010001…,1﹣是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2016秋•泗县期中)估计的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【考点】估算无理数的大小.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵<<,即4<<5,∴估计的大小在4与5之间,故选:C.【点评】此题主要考查了估算无理数的能力,“夹逼法”是估算的一般方法,也是常用方法.4.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cmB.10cmC.14cmD.无法确定【考点】平面展开-最短路径问题.【分析】先将图形展开,根据两点之间,线段最短,利用根据勾股定理即可得出结论.【解答】解:如图所示:沿AC将圆柱的侧面展开,∵底面半径为2cm,∴BC==2π≈6cm,在Rt△ABC中,∵AC=8cm,BC=6cm,∴AB===10cm.故选:B.【点评】本题考查的是平面展开﹣最短路径问题,熟知两点之间,线段最短是解答此类问题的关键.5.下列各式中,正确的是()A.B.C.D.【考点】算术平方根.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:A、=|﹣3|=3;故A错误;B、=﹣|3|=﹣3;故B正确;C、=|±3|=3;故C错误;D、=|3|=3;故D错误.故选:B.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.6.如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(﹣2,3),则点P的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变分别确定P1和P的坐标即可.【解答】解:∵P2的坐标为(﹣2,3),P1关于x轴的对称点为P2,∴P1(﹣2,﹣3),∵P点的坐标为(a,b),它关于y轴的对称点为P1,∴a=2,b=﹣3,∴点P的坐标为(2,﹣3),故选:B.【点评】此题主要考查了关于x、y轴对称点的坐标,关键是掌握点的坐标的变化规律.7.下列计算正确的是()A.B.C.(2﹣)(2+)=1D.【考点】二次根式的加减法;二次根式的性质与化简;二次根式的乘除法.【分析】根据二次根式的运算法则,逐一计算,再选择.【解答】解:A、原式=2﹣=,故正确;B、原式==,故错误;C、原式=4﹣5=﹣1,故错误;D、原式==3﹣1,故错误.故选A.【点评】根式的加减,注意不是同类项的不能合并.计算二次根式时要注意先化简成最简二次根式再计算.8.关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.【考点】一次函数的图象.【分析】根据图象与y轴的交点直接解答即可.【解答】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选C.【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力.9.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1B.3C.1D.﹣1或3【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】把点的坐标代入函数解析式求出m的值,再根据y随x的增大而增大判断出m>0,从而得解.【解答】解:∵一次函数y=mx+|m﹣1|的图象过点(0,2),∴|m﹣1|=2,∴m﹣1=2或m﹣1=﹣2,解得m=3或m=﹣1,∵y随x的增大而增大,∴m>0,∴m=3.故选B.【点评】本题考查了待定系数法求一次函数解析式,一次函数的性质,本题难点在于要根据函数的增减性对m的值进行取舍.10.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或37【考点】勾股定理.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD==9,在Rt△ACD中,CD==5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故选:C.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.二、填空题(共8小题,每小题4分,满分32分)11.的算术平方根是.【考点】算术平方根.【分析】根据算术平方根的意义知.=6,故可以得到的算术平方根.【解答】解:∵=6,故的算术平方根是.故填.【点评】此题主要考查了算术平方根的意义,不要忘记计算=6.12.如图,如果所在的位置坐标为(﹣1,﹣2),所在的位置坐标为(2,﹣2),则所在位置坐标为(﹣3,3).【考点】坐标确定位置.【分析】根据士与相的位置,得出原点的位置即可得出炮的位置,即可得出答案.【解答】解:∵所在的位置坐标为(﹣1,﹣2),所在的位置坐标为(2,﹣2),得出原点的位置即可得出炮的位置,∴所在位置坐标为:(﹣3,3).故答案为:(﹣3,3).【点评】此题主要考查了点的坐标的位置,根据已知得出原点的位置是解决问题的关键.13.比较下列实数的大小(在空格中填上>、<或=)①<;②>;③<.【考点】实数大小比较.【分析】①利用绝对值大的反而小,首先比较两数的绝对值,进而比较即可得出答案;②利用分母相同的两数比较分子即可得出大小关系;③将根号外的因式移到根号内部,进而得出答案.【解答】解:①∵||=,||=,>,∴﹣<,②∵﹣1>1,∴>;③∵=,=,∴<,即<.故答案为:①<,②>,③<.【点评】此题主要考查了实数比较大小,正确掌握实数比较的大小法则是解题关键.14.如果M(m+3,2m+4)在y轴上,那么点M的坐标是(0,﹣2).【考点】点的坐标.【分析】根据y轴上点的横坐标为0列方程求出m的值,再求解即可.【解答】解:∵M(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,所以,2m+4=2×(﹣3)+4=﹣2,所以,点M(0,﹣2).故答案为:(0,﹣2).【点评】本题考查了点的坐标,熟记y轴上点的横坐
本文标题:宿州市泗县2016-2017学年八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7841197 .html