您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 郑州市2015-2016学年八年级下期末数学试卷含答案解析
2015-2016学年河南省郑州市八年级(下)期末数学试卷一、选择题(每题3分)1.下列图案既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣bC.1+a>1﹣bD.1+a>b﹣13.如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为()A.3B.2.5C.2D.1.54.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④6.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x2+2x+1C.x2﹣2x+1D.x(x﹣2)﹣(x﹣2)7.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,则所得任一多边形内角和度数不可能是()A.720°B.540°C.360°D.180°8.若不等式组,只有三个正整数解,则a的取值范围为()A.0≤a<1B.0<a<1C.0<a≤1D.0≤a≤1二、填空题(每题3分)9.x的2倍与y的差大于1,可列不等式:.10.若分式的值为0,则x的值为.11.用反证法证明“一个三角形不能有两个角是直角”时应首先假设.12.当y≠0时,=,这种变形的依据是.13.小明同学在社团活动中给发明的机器人设置程序:(a,n),机器人执行步骤是:向正前方走a米后向左转n°,再依次执行相同程序,直至回到原点.现输入a=3,n=60°,那么机器人回到原出发点共走了米.14.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.15.小明想从一张长为8cm,宽为6cm的长方形纸片上剪下一个腰为5cm的等腰三角形,要求等腰三角形的一个顶点与长方形的一个顶点重合,其余的两个顶点在长方形的边上,则剪下的等腰三角形的底边长为.三、解答题16.给出三个分式:,,,请你把这三个分式(次序自定)填入下列横线上(﹣)÷,并化简.17.在△ABC中,AB=AC,请你用两个与△ABC全等的三角形拼成一个四边形,并说明在你拼的图形中,其中一个三角形经过怎样的运动变化就可得到另一个三角形.18.在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③;④;(2)如果点C的坐标为(1,3),那么不等式kx+b≤k1x+b1的解集是.19.在列分式方程解应用题时:(1)主要步骤有:①审清题意;②设未知数;③根据题意找关系,列出分式方程;④解方程,并;⑤写出答案.(2)请你联系实际设计一道关于分式方程=的应用题,要求表述完整,条件充分,并写出解答过程.20.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.21.2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.22.在△ABC中,AB=AC,∠A=30°,将线段BC绕点B逆时针旋转60°得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)图1中:AE和CF有什么数量关系?请说明理由;(3)如图2,连接CE,判断△CEF的形状并加说明理由.2015-2016学年河南省郑州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分)1.下列图案既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,也是中心对称图形.故选D.2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣bC.1+a>1﹣bD.1+a>b﹣1【考点】不等式的性质.【分析】不等式的基本性质是解不等式的主要依据,分析中注意不等式的基本性质是有条件的,要确定符合其中的条件,再运用相关性质得出结论.【解答】解:A、a<0时,a2<b2,故A错误;B、不等式的两边都乘以﹣1,不等号的方向改变,故B错误;C、左边乘以1,右边乘以﹣1,故C错误;D、左边加1,右边减1,故D正确;故选:D.3.如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为()A.3B.2.5C.2D.1.5【考点】平行四边形的性质.【分析】由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE﹣AB,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE﹣AB=5﹣3=2;故选:C.故答案为:3.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:原不等式可化为:∴在数轴上可表示为:故选A.5.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.【解答】解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,故选:B.6.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x2+2x+1C.x2﹣2x+1D.x(x﹣2)﹣(x﹣2)【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】原式各项分解后,即可做出判断.【解答】解:A、原式=(x+1)(x﹣1),含因式x﹣1,不合题意;B、原式=(x+1)2,不含因式x﹣1,符合题意;C、原式=(x﹣1)2,含因式x﹣1,不合题意;D、原式=(x﹣2)(x﹣1),含因式x﹣1,不合题意,故选B7.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,则所得任一多边形内角和度数不可能是()A.720°B.540°C.360°D.180°【考点】多边形内角与外角.【分析】根据题意画出图形,再分别根据多边形的内角和定理进行解答即可.【解答】解:不同的划分方法有4种,见图:所得任一多边形内角和度数可能是360°或540°或180°.故选A.8.若不等式组,只有三个正整数解,则a的取值范围为()A.0≤a<1B.0<a<1C.0<a≤1D.0≤a≤1【考点】一元一次不等式组的整数解.【分析】先确定不等式组的整数解,再求出a的范围即可.【解答】解:∵解不等式①得:x≤3,又∵不等式组只有三个正整数解,∴0≤a<1,故选A.二、填空题(每题3分)9.x的2倍与y的差大于1,可列不等式:2x﹣y>1.【考点】由实际问题抽象出一元一次不等式.【分析】先表示出x的2倍,再表示出与y的差,最后根据大于1可得不等式.【解答】解:根据题意,可列不等式2x﹣y>1,故答案为:2x﹣y>1.10.若分式的值为0,则x的值为﹣2.【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:若分式的值为0,则x2﹣4=0且x﹣2≠0.开方得x1=2,x2=﹣2.当x=2时,分母为0,不合题意,舍去.故x的值为﹣2.故答案为﹣2.11.用反证法证明“一个三角形不能有两个角是直角”时应首先假设这个三角形中有两个角是直角.【考点】反证法.【分析】根据反证法的第一步是从结论的反面出发进而假设得出即可.【解答】解:用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设这个三角形中有两个角是直角.故答案为:这个三角形中有两个角是直角.12.当y≠0时,=,这种变形的依据是分式的基本性质.【考点】分式的基本性质.【分析】根据分式的基本性质,分式的分子和分母都乘以y(y≠0),分式的值不变.【解答】解:分式的基本性质.13.小明同学在社团活动中给发明的机器人设置程序:(a,n),机器人执行步骤是:向正前方走a米后向左转n°,再依次执行相同程序,直至回到原点.现输入a=3,n=60°,那么机器人回到原出发点共走了18米.【考点】多边形内角与外角.【分析】第一次回到原处正好转了360°,正好构成一个六边形,即可解答.【解答】解:机器人转了一周共360度,360°÷60°=6,共走了6次,机器人走了3×6=18米.故答案为:18.14.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【考点】三角形中位线定理;平行四边形的性质.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.15.小明想从一张长为8cm,宽为6cm的长方形纸片上剪下一个腰为5cm的等腰三角形,要求等腰三角形的一个顶点与长方形的一个顶点重合,其余的两个顶点在长方形的边上,则剪下的等腰三角形的底边长为5cm或2cm或4cm.【考点】等腰三角形的性质.【分析】因为等腰三角形的腰的位置不确定,所以分三种情况:①两腰在矩形相邻的两边上,②一腰在矩形的宽上,③一腰在矩形的长上,画出图形,利用勾股定理分分别求底边长.【解答】解:分三种情况讨论:①如图1所示:BE=BF=5,由勾股定理得:EF==5,②如图2所示:∵AE=EF=5,∴BE=6﹣5=1,∴BF==2,∴AF==2,③如图3所示,∵AE=EF=5,∴ED=8﹣5=3,∴DC==4,∴AC==4,所以剪下的等腰三角形的底边长为5cm或2cm或4cm;故答案为:5cm或2cm或4cm5cm.三、解答题16.给出三个分式:,,,请你把这三个分式(次序自定)填入下列横线上(﹣)÷,并化简.【考点】分式的混合运算.【分析】选择(﹣)÷,先将括号内通分、同时将除式分母
本文标题:郑州市2015-2016学年八年级下期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7841533 .html