您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 邹城八中2016-2017年八年级上第一次月考数学试卷含答案解析
2016-2017学年山东省济宁市邹城八中八年级(上)第一次月考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求.1.下列所给的各组线段,能组成三角形的是()A.10cm、20cm、30cmB.20cm、30cm、40cmC.10cm、20cm、40cmD.10cm、40cm、50cm2.如图,△ABC≌△CDA,AC=7cm,AB=5cm,BC=8cm,则AD的长为()A.7cmB.8cmC.5cmD.无法确定3.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高5.如图,在△ABC中,若AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,则AD是几个三角形的高线()A.4个B.5个C.6个D.8个6.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE7.下列图形不具有稳定性的是()A.B.C.D.8.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°9.如图,EA∥DF,AE=DF,要使△ACE≌△DBF,则只要()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC10.如图,在△ABC中,∠C=90°,点D在AB上,BC=BD,DE⊥AB交AC于点E,△ABC的周长为12,△ADE的周长为6,则BC的长为()A.3B.4C.5D.6二、填空题:本大题共4小题,每小题3分,共12分.11.若等腰三角形的两边长分别为6cm和8cm,则它的周长是.12.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为.13.如图所示,在△ABC中,已知点D,E,F分别是AC、BD,CE的中点,且S△ABC=6平方厘米,则S△AEF的值为平方厘米.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.三、解答题(共7小题,满分14分)15.如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长a米,FG的长b米.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?16.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm.(1)求△ABC的面积;(2)求CD的长.17.在△ABC中,∠C=90°,∠B=55°点D在边BC上,点E在CN的延长线上,连接DE,∠E=25°,求∠BFD的度数.18.已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.19.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,AB=DE.求证:FB=CE.20.如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC的中线还是角平分线?请说明你判断的理由.21.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.2016-2017学年山东省济宁市邹城八中八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求.1.下列所给的各组线段,能组成三角形的是()A.10cm、20cm、30cmB.20cm、30cm、40cmC.10cm、20cm、40cmD.10cm、40cm、50cm【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【解答】解:A、∵10+20=30∴不能构成三角形;B、∵20+30>40∴能构成三角形;C、∵20+10<40∴不能构成三角形;D、∵10+40=50∴不能构成三角形.故选B.2.如图,△ABC≌△CDA,AC=7cm,AB=5cm,BC=8cm,则AD的长为()A.7cmB.8cmC.5cmD.无法确定【考点】全等三角形的性质.【分析】根据全等三角形的性质推出AD=BC即可.【解答】解:∵△ABC≌△CDA,∴AD=BC=8cm.故选B.3.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°【考点】三角形内角和定理.【分析】由∠BAC=40°,AD平分∠BAC可得∠BAD=∠CAD=20°,由BD∥AC可知∠D=∠CAD,从而求得∠D的度数.【解答】解:∵∠BAC=40°,AD平分∠BAC,∴∠BAD=∠CAD=20°.又∵BD∥AC,∴∠D=∠CAD.∴∠D=20°.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的面积.【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、三角形的中线一定在三角形的内部,故本选项正确;C、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确;D、直角三角形有三条高,故本选项错误.故选D.5.如图,在△ABC中,若AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,则AD是几个三角形的高线()A.4个B.5个C.6个D.8个【考点】三角形的角平分线、中线和高.【分析】根据三角形高的定义可知,三角形的高可以在三角形内部,可以是三角形的边,还可以在三角形外部,结合图形即可求解.【解答】解:∵在△ABC中,AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,∴AD是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC的高.故选C.6.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.7.下列图形不具有稳定性的是()A.B.C.D.【考点】多边形;三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:根据三角形的稳定性可得,B、C、D都具有稳定性.不具有稳定性的是A选项.故选A.8.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选D.9.如图,EA∥DF,AE=DF,要使△ACE≌△DBF,则只要()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC【考点】全等三角形的判定.【分析】根据AB=CD求出AC=DB,根据平行线的性质得出∠A=∠D,根据SAS推出两三角形全等即可.【解答】解:∵EA∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=CD+BC,∴AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(SAS),即只有选项A正确,选项B、C、D都不能推出两三角形全等,故选:A.10.如图,在△ABC中,∠C=90°,点D在AB上,BC=BD,DE⊥AB交AC于点E,△ABC的周长为12,△ADE的周长为6,则BC的长为()A.3B.4C.5D.6【考点】相似三角形的判定与性质.【分析】设BC=BD=x,AD=y,△ABD和△ABC相似,根据三角形的性质相似三角形周长的比等于对应边的比进行解答.【解答】解:设BC=BD=x,AD=y,因为∠C=∠ADE=90°∠A=∠A,所以△ADE∽△ACB;两三角形的周长之比为1:2,所以AD:AC=1:2,则AC=2y;根据三角形ABC的周长为12得:x+(x+y)+2y=12;即:2x+3y=12…①根据勾股定理得:(2y)2+x2=(x+y)2,即:2x=3y…②联合①②得:x=3,y=2;故应选A.二、填空题:本大题共4小题,每小题3分,共12分.11.若等腰三角形的两边长分别为6cm和8cm,则它的周长是22cm或20cm.【考点】等腰三角形的性质;三角形三边关系.【分析】本题已知了等腰三角形的两边的长,但没有明确这两边哪边是腰,哪边是底,因此要分类讨论.【解答】解:当三边是8cm,8cm,6cm时,符合三角形的三边关系,此时周长是22cm;当三边是8cm,6cm,6cm时,符合三角形的三边关系,此时周长是20cm.因此等腰三角形的周长为22cm或20cm.故答案为:22cm或20cm.12.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为10°.【考点】轴对称的性质;三角形的外角性质.【分析】根据轴对称的性质可知∠CA′D=∠A=50°,然后根据外角定理可得出∠A′DB.【解答】解:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.13.如图所示,在△ABC中,已知点D,E,F分别是AC、BD,CE的中点,且S△ABC=6平方厘米,则S△AEF的值为3平方厘米.【考点】三角形的面积.【分析】根据等底等高的三角形的面积相等可知,三角形的中线把三角形分成面积相等的两个三角形,然后求解即可.【解答】解:∵D是AC的中点,∴S△BAD=S△BCD=S△ABC=×6=3cm2,∵E是BD的中点,∴S△ADE=S△CDE=×3=cm2,∴S△AEF=S△ADE+S△CDE=+=3cm2.故答案为:3.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.三、解答题(共7小题,满分14分)15.如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=C
本文标题:邹城八中2016-2017年八年级上第一次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7841727 .html