您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 15.2.1 第1课时 分式的乘除精选练习1
15.2.1分式的乘除第1课时分式的乘除一.填空题1.约分:22112mmm;2311aaa;2321213nannbaab(n为正整数)2.计算:224)2()2(cabc;4222)1()()(ababba;)()()(2222xyxyyx;112112)2()2(yxxy;62332)2()43(abcabc;222222)(xyxxyyxyxxxy。二.判断题下列运算正确的打“√”,错误的打“×”:1.yxxyxxyyxyxyyxx2122()2.33632)(zyxzyx()3.249223)(zyxzyx()4.nnnabab2422)((n为正整数)()5.69323278)32(abab()三.选择题1.已知3:yx,则分式222)(yxyx的值是()A.43B.2627C.21D.13142.在分式xa3,yxxy226,2222yxyx,2)(yxxy,2233yxyx中,最简分式有()A.1个B.2个C.3个D.4个3.下列各式正确的是()A.yxyxyxyx2222B.222)11(1212xxxxxxC.bbaba2D.2222)(bacbac四.计算1.)6()43(8232yxzyxx2.223332)()()3(ababbabax[来源:学科网ZXXK][来源:学。科。网]3.222222)()(ybxaabxbaxabybay4.)5(2310396962222xxxxxxxxx5.xxxxxxx36)3(446222[来源:Z_xx_k.Com]6.)]2(11[1122322xxxxxxx7.214415610722322aaaaaaaaaa8.3222)()(baaabba[来源:Z_xx_k.Com]9.2224422222322)(1)2()(xaxaxaxaxaxaxa10.abcbabccbaaccbaabcba222222222222222211.])([)(2222yxyxyyxyyx12.yxyxxyxy2131231323213.112244442222232223xxxxxxxxxxxx14.)2(44124416222xxxxxx15.32242227]2)([)(])(3[abaabababa[来源:Z_xx_k.Com]16.2222322226535244)28(aabbbaabbbabbaba,其中21a,41b。答案一.1.mm11;1a;ab2.2424cba;41ab;1;15927ba;xyyyx22二.1.×2.×3.×4.×5.√三.1.C2.B3.B四.1.解:原式4232366438yxzyxzyxx2.解:原式229222222239))(())((27)()())(()(27abbaxbababaabbababababax3.解:原式))(())(())(())((ybybxaxabxaxbyay))(())(())(())((bybxaxayybbxaxay4.解:原式)5(23)3)(3()2)(5()2)(3()3(2xxxxxxxxx215.解:原式223)2)(3(31)2()3(22xxxxxxx6.解:原式])1)(2(11)1)(1([112222xxxxxxxxx2)2(1)2)(1(112222xxxxxxxxx7.解:原式112)2()1)(1()5)(1()5)(2(222aaaaaaaaaaa8.解:原式222223332222)()()()()(bbaababaabaabababa9.解:原式1)(1)())()(()()(44222233xaxaxaxaxaxaxaxa10.解:原式cbacbacbacbacbacbacbacbacbacba))(())(())(())((11.解:原式222))((])()([)()(yyxyxyxyyxyxyyx12.解:原式1323232326326323232yxyxyxyxyxyxxyxxyx13.解:原式1)1)(1()2()2()2()2()2()2(22222xxxxxxxxxxx1)1)(1()2)(1)(1()2()2()2)(1(2222xxxxxxxxxx22xx14.解:原式)2)(3(2821)3(4)2)(2()2()8(22xxxxxxxxx15.解:原式22336244273)()(8)(8)()()(3ababbaabaababababa16.解:原式)3)(2()2()2)(2()2)(2(22ababbbabababbabababababa2422)2(2当21a,41b时,原式041)21(2414)21(2x∴代数式的值为0
本文标题:15.2.1 第1课时 分式的乘除精选练习1
链接地址:https://www.777doc.com/doc-7859989 .html