您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2018-2019学年四川省泸州市高一下学期期末数学试题(解析版)
第1页共16页四川省泸州市高一下学期期末数学试题一、单选题1.设集合2{1,2,3},|1ABxx,则AB()A.{}1B.{1}C.{1,1}D.{1,2,3}【答案】B【解析】先求得集合{1,1}B,再结合集合的交集的概念及运算,即可求解.【详解】由题意,集合2{1,2,3},|1{1,1}ABxx,所以AB{1}.故选:B.【点睛】本题主要考查了集合的交集的运算,其中解答中正确求解集合B,结合集合的交集的概念与运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2.已知等比数列na中,141,8aa,该数列的公比为A.2B.-2C.2D.3【答案】B【解析】分析:根据等比数列通项公式求公比.详解:因为3418aqa,所以2q选B.点睛:本题考查等比数列通项公式,考查基本求解能力.3.下列函数中,在(0,)上存在最小值的是()A.2(1)yxB.yxC.2xyD.lnyx【答案】A【解析】结合初等函数的单调性,逐项判定,即可求解,得到答案.【详解】由题意,函数2(1)yx,当1x时,取得最小值min0y,满足题意;函数yx在(0,)为单调递增函数,所以函数yx在区间(0,)无最小值,所以B不正确;第2页共16页函数2xy在(0,)为单调递增函数,所以函数2xy在区间(0,)无最小值,所以C不正确;函数lnyx在(0,)为单调递增函数,所以函数lnyx在区间(0,)无最小值,所以D不正确.故选:A.【点睛】本题主要考查了函数的最值问题,其中解答中熟记基本初等函数的单调性,合理判定是解答的关键,着重考查了推理与运算能力,属于基础题.4.在平面直角坐标系xOy中,角的顶点与原点O重合,它的始边与x轴的非负半轴重合,终边OP交单位圆O于点34,55P,则tan的值为()A.35-B.45C.43D.34【答案】C【解析】根据三角函数的定义,即可求解,得到答案.【详解】由题意,角的顶点与原点O重合,它的始边与x轴的非负半轴重合,终边OP交单位圆O于点34,55P,根据三角函数的定义可得445tan335yx.故选:C.【点睛】本题主要考查了三角的函数的定义,其中解答中熟记三角函数的定义是解答的关键,着重考查了推理与计算能力,属于基础题.5.在四边形ABCD中,若ACABAD,则四边形ABCD一定是()A.正方形B.菱形C.矩形D.平行四边形【答案】D【解析】试题分析:因为,根据向量的三角形法则,有,则可知,故四边形ABCD为平行四边形.【考点】向量的三角形法则与向量的平行四边形法则.6.若平面α∥平面β,直线l平面α,直线n⊂平面β,则直线l与直线n的位置关系第3页共16页是()A.平行B.异面C.相交D.平行或异面【答案】D【解析】由面面平行的定义,可得两直线无公共点,可得所求结论.【详解】平面α∥平面β,可得两平面α,β无公共点,即有直线l与直线n也无公共点,可得它们异面或平行,故选:D.【点睛】本题考查空间线线的位置关系,考查面面平行的定义,属于基础题.7.一个几何体的三视图分别是一个正方形,一个矩形,一个半圆,尺寸大小如图所示,则该几何体的体积是()A.2B.23C.D.2【答案】C【解析】由给定的几何体的三视图得到该几何体表示一个底面半径为1,母线长为2的半圆柱,结合圆柱的体积公式,即可求解.【详解】由题意,根据给定的几何体的三视图可得:该几何体表示一个底面半径为1,母线长为2的半圆柱,所以该半圆柱的体积为22111222Vrh.故选:C.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.第4页共16页8.已知12121ln,2xxe,3x满足33lnxex,则()A.123xxxB.132xxxC.213xxxD.312xxx【答案】A【解析】根据对数的化简公式得到11ln202xln,由指数的运算公式得到122xe=10,1e,由对数的性质得到33lnxex0,31x,进而得到结果.【详解】已知11ln202xln,122 xe=10,1e,33lnxex0,31x进而得到123xxx.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.9.已知1sin33,则cos23()A.79B.79C.29D.29【答案】B【解析】由三角函数的诱导公式,得到cos(2)cos(2)cos[2()]333,再结合余弦的倍角公式,即可求解.【详解】由题意,根据三角函数的诱导公式和余弦的倍角公式,可得2cos(2)cos(2)cos(2)cos[2()]333327[12sin()]39.故选:B.【点睛】本题主要考查了三角函数的诱导公式和余弦的倍角公式的化简求值,其中解答中熟记三第5页共16页角函数的诱导公式和三角恒等变换的公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.10.在△ABC中,点D在线段BC的延长线上,且BC=3CD,点O在线段CD上(与点C,D不重合),若AO=xAB+(1-x)AC,则x的取值范围是()A.102,B.103,C.102,D.103,【答案】D【解析】根据所给的数量关系,写出要求向量的表示式,注意共线的向量之间的三分之一关系,根据表示的关系式和所给的关系式进行比较,得到结果.【详解】如图.依题意,设BO=λBC,其中1λ43,则有AO=AB+BO=AB+λBC=AB+λ(AC-AB)=(1-λ)AB+λAC.又AO=xAB+(1-x)AC,且ABAC,不共线,于是有x=1-λ∈103,,即x的取值范围是103,.故选D.【点睛】本题考查向量的基本定理,是一个基础题,这种题目可以出现在解答题目中,也可以单独出现,注意表示向量时,一般从向量的起点出发,绕着图形的边到终点.11.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣第6页共16页除:(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用…等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额x元(含税)3000x300012000x1200025000x…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其它专项附加扣除),则他该月应交纳的个税金额为()A.570B.890C.1100D.1900【答案】B【解析】根据题意,分段计算李某的个人所得税额,即可求解,得到答案.【详解】由题意,李某月应纳税所得额(含税)为1900050001000200011000元,不超过3000的部分的税额为30003%90元,超过3000元至12000元的部分税额为800010%800元,所以李某月应缴纳的个税金额为90800890元.故选:B.【点睛】本题主要考查了分段函数的实际应用与函数值的计算问题,其中解答中认真审题,合理利用分段函数进行求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依此类推,记此数列为na,则2019a()A.1B.2C.4D.8【答案】C【解析】将数列分组:第1组为02,第2组为012,2,第3组为0132,2,2,,根据第7页共16页636420162,进而得到数列的2017项为02,数列的第2018项为12,数列的第2019项为22,即可求解.【详解】将所给的数列分组:第1组为02,第2组为012,2,第3组为0132,2,2,,则数列的前n组共有(1)2nn项,又由636420162,所以数列的前63组共有2016项,所以数列的2017项为02,数列的第2018项为12,数列的第2019项为22,所以2019a224故选:C.【点睛】本题主要考查了等差数列的前n项和公式的应用,其中解答中根据所给数列合理分组,结合等差数列的前n项和求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题13.函数2()3fxxax在(1,)上是减函数,则a的取值范围是________.【答案】(,2]【解析】根据二次函数的图象与性质,即可求得实数a的取值范围,得到答案.【详解】由题意,函数2()3fxxax表示开口向下,且对称轴方程为2ax的抛物线,当函数在(1,)上是减函数时,则满足12a,解得2a,所以实数a的取值范围(,2].故答案为:(,2].【点睛】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题.14.设向量12,ee是两个不共线的向量,若122aee与12bee共线,则_______.第8页共16页【答案】12【解析】试题分析:∵向量1e,2e是两个不共线的向量,不妨以1e,2e为基底,则12122211aeebee=(,),=(,),又∵ab、共线,12110,2().【考点】平面向量与关系向量15.已知函数2()sin,2fxxx,若1()2fx,则x的取值围为_________.【答案】3,,2444【解析】由函数21cos2()sin2xfxx,根据1()2fx,得到cos20x,再由,2x,得到2,2x,结合余弦函数的性质,即可求解.【详解】由题意,函数21cos2()sin2xfxx,又由1()2fx,即1cos2122x,即cos20x,因为,2x,则2,2x,所以22x或3222x,即24x或344x,所以实数x的取值围为3,,2444.故答案为:3,,2444.【点睛】本题主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟练应用余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.16.在封闭的直三棱柱111ABCABC内有一个表面积为S的球,若1,6,8,3ABBCABBCAA,则S的最大值是_______.【答案】9第9页共16页【解析】根据已知可得直三棱柱111ABCABC的内切球半径为32,代入球的表面积公式,即可求解.【详解】由题意,因为,6,8ABBCABBC,所以10AC,可得ABC的内切圆的半径为6826810r,又由13AA
本文标题:2018-2019学年四川省泸州市高一下学期期末数学试题(解析版)
链接地址:https://www.777doc.com/doc-7872761 .html