您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 实验三数字图像地空间域滤波
实用标准文档文案大全实验三、四数字图像的空间域滤波和频域滤波1.实验目的1.掌握图像滤波的基本定义及目的。2.理解空间域滤波的基本原理及方法。3.掌握进行图像的空域滤波的方法。4.掌握傅立叶变换及逆变换的基本原理方法。5.理解频域滤波的基本原理及方法。6.掌握进行图像的频域滤波的方法。2.实验基本原理1.空间域增强空间域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。空域滤波一般分为线性滤波和非线性滤波两类。线性滤波器的设计常基于对傅立叶变换的分析,非线性空域滤波器则一般直接对领域进行操作。各种空域滤波器根据功能主要分为平滑滤波器和锐化滤波器。平滑可用低通来实现,平滑的目的可分为两类:一类是模糊,目的是在提取较大的目标前去除太小的细节或将目标内的小肩端连接起来;另一类是消除噪声。锐化可用高通滤波来实现,锐化的目的是为了增强被模糊的细节。结合这两种分类方法,可将空间滤波增强分为四类:线性平滑滤波器(低通)非线性平滑滤波器(低通)线性锐化滤波器(高通)非线性锐化滤波器(高通)空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。2.平滑滤波器1)线性平滑滤波器线性低通平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3×3的模板来说,最简单的是取所有系数为1,为了保持输出图像任然在原来图像的灰度值范围内,模板与象素邻域的乘积都要除以9。MATLAB提供了fspecial函数生成滤波时所用的模板,并提供filter2函数用指定的滤波器模板对图像进行运算。函数fspecial的语法格式为:h=fspecial(type);h=fspecial(type,parameters);实用标准文档文案大全其中参数type指定滤波器的种类,parameters是与滤波器种类有关的具体参数。表2.1MATLAB中预定义的滤波器种类MATLAB提供了一个函数imnoise来给图像增添噪声,其语法格式为:J=imnoise(I,type);J=imnoise(I,type,parameters);参数type指定噪声的种类,parameters是与噪声种类有关的具体参数。参数的种类见表2.2。表2.2噪声种类及参数说明2)非线性平滑滤波器中值滤波器是一种常用的非线性平滑滤波器,其滤波原理与均值滤波器方法类似,但计算的非加权求和,而是把领域中的图像的象素按灰度级进行排序,然后选择改组的中间值作为输出象素值。MATLAB提供了medfilt2函数来实现中值滤波,其语法格式为:实用标准文档文案大全B=medfilt2(A,[mn]);B=medfilt2(A);其中,A是原图象,B是中值滤波后输出的图像。[mn]指定滤波模板的大小,默认模板为3×3。3.锐化滤波器图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,需要利用图像锐化技术,使图像的边缘变得清晰。1)线性锐化滤波器线性高通滤波器是最常用的线性锐化滤波器。这种滤波器的中心系数都是正的,而周围的系数都是负的,所有的系数之和为0。对3×3的模板来说,典型的系数取值为:[-1-1-1;-18-1;-1-1-1]事实上这是拉普拉斯算子。语句h=-fspecial(‘laplacian’,0.5)得到的拉普拉斯算子为:h=-0.3333-0.3333-0.3333-0.33332.6667-0.3333-0.3333-0.3333-0.33332)非线性锐化滤波邻域平均可以模糊图像,因为平均对应积分,所以利用微分可以锐化图像。图像处理中最常用的微分方法是利用梯度。常用的空域非线性锐化滤波微分算子有sobel算子、prewitt算子、log算子等。4.频域增强频域增强是利用图像变换方法将原来的图像空间中的图像以某种形式转换到其他空间中,然后利用该空间的特有性质方便地进行图像处理,最后再转换回原来的图像空间中,从而得到处理后的图像。频域增强的主要步骤是:选择变换方法,将输入图像变换到频域空间。在频域空间中,根据处理目的设计一个转移函数,并进行处理。将所得结果用反变换得到增强的图像。常用的频域增强方法有低通滤波和高通滤波。5.低通滤波图像的能量大部分集中在幅度谱的低频和中频部分,而图像的边缘和噪声对应于高频部分。因此能降低高频成分幅度的滤波器就能减弱噪声的影响。由卷积定理,在频域实现低通滤波的数学表达式:G(u,v)=H(u,v)F(u,v)1)理想低通滤波器(ILPF)2)巴特沃斯低通滤波器(BLPF)实用标准文档文案大全3)指数型低通滤波器(ELPF)6.高通滤波由于图像中的细节部分与其高频分量相对应,所以高通滤波可以对图像进行锐化处理。高通滤波与低通滤波相反,它是高频分量顺利通过,使低频分量受到削弱。高通滤波器和低通滤波器相似,其转移函数分别为:1)理想高通滤波器(IHPF)2)巴特沃斯高通滤波器(BLPF)3)指数型高通滤波器(ELPF)图像经过高通滤波处理后,会丢失许多低频信息,所以图像的平滑区基本上会消失。所以,可以采用高频加强滤波来弥补。高频加强滤波就是在设计滤波传递函数时,加上一个大于0小于1的常数c,即:H′(u,v)=H(u,v)+c3.实验内容与要求1.平滑空间滤波:1)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。3)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。4)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,实用标准文档文案大全显示均值处理后的图像(提示:利用fspecial函数的’average’类型生成均值滤波器)。5)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。6)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。2.锐化空间滤波1)读出blurry_moon.tif这幅图像,采用3×3的拉普拉斯算子w=[1,1,1;1–81;1,1,1]对其进行滤波。2)编写函数w=genlaplacian(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w=[111111111111-24111111111111]3)分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,并利用式2(,)(,)(,)gxyfxyfxy完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。4)采用不同的梯度算子对blurry_moon.tif进行锐化滤波,并比较其效果。5)自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;3.傅立叶变换1)读出woman.tif这幅图像,对其进行快速傅立叶变换,分别显示其幅度图像和相位图像。仅对相位部分进行傅立叶反变换后查看结果图像。2)仅对幅度部分进行傅立叶反变换后查看结果图像。3)将图像的傅立叶变换F置为其共轭后进行反变换,比较新生成图像与原始图像的差异。4.平滑频域滤波1)设计理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器,截至频率自选,分别给出各种滤波器的透视图。2)读出test_pattern.tif这幅图像,分别采用理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同低通滤波器得到的图像与原图像的区别,特别注意振铃效应。(提示:1)在频率域滤波同样要注意到填充问题;2)注意到(-1)x+y;)5.锐化频域滤波1)设计理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器,截至频率自选,分别给出各种滤波器的透视图。实用标准文档文案大全2)读出test_pattern.tif这幅图像,分别采用理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同高通滤波器得到的图像与原图像的区别。1.实验具体实现1.平滑空间滤波:1)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。I=imread('eight.tif');imshow(I);J=imnoise(I,'salt&pepper',0.05);%noisedensity=0.05K=imnoise(I,'gaussian',0.01,0.01);subplot(131),imshow(I);subplot(132),imshow(J);subplot(133),imshow(K);图2.1初始图像及椒盐噪声图像、高斯噪声污染图2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。I=imread('eight.tif');H=fspecial('sobel');Sobel=imfilter(I,H,'replicate');H=fspecial('laplacian',0.4);lap=imfilter(I,H,'replicate');H=fspecial('gaussian',[33],0.5);gaussian=imfilter(I,H,'replicate');subplot(221),imshow(I);subplot(222),imshow(Sobel);subplot(223),imshow(lap);subplot(224),imshow(gaussian);实用标准文档文案大全图2.2原图像及各类低通滤波处理图像3)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。originalRGB=imread('peppers.png');h=fspecial('motion',50,45);%motionblurredfilteredRGB=imfilter(originalRGB,h);boundaryReplicateRGB=imfilter(originalRGB,h,'replicate');boundary0RGB=imfilter(originalRGB,h,'x');boundary0RGB=imfilter(originalRGB,h,0);boundarysymmetricRGB=imfilter(originalRGB,h,'symmetric');boundarycircularRGB=imfilter(originalRGB,h,'circular');实用标准文档文案大全图2.3原图像及运动模糊图像图2.4函数imfilter各填充方式处理图像4)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像。J=imnoise(I,'salt&pepper',0.05);h=fspecial('average');%AveragingFilteringJ1=imfilter(J,h);fori=1:10J1=imfilter(J,h);endfori=1:20J2=imfilter(J,h);图2.5椒盐噪声污染图像经10次、20次均值滤波图像由图2.5可得,20次滤波后的效果明显好于10次滤波,
本文标题:实验三数字图像地空间域滤波
链接地址:https://www.777doc.com/doc-7897445 .html