您好,欢迎访问三七文档
0数学校本课程威海市第七中学1序言数学是打开知识大门的钥匙,是整个科学的基础知识。创新教学的先行者里斯特伯先生指出:“学生学习数学就是要解决生活问题,只有极少数人才能攻关艰深的高级数学问题,我们不能只为了培养尖端人才而忽略或者牺牲大多数学生的利益,所以数学首先应该是生活概念。”在生活中学数学,以学生生活中实实在在的鲜活材料来吸引学生对科学的兴趣。我们选取的都是从学生生活实践中取材,将数学知识巧妙地运用于生活之中,增加了学生对数学的兴趣,实现新课改所倡导的情感体验,培养良好的科学态度和正确价值观的目标。数学校本课程的开发要满足学生已有的兴趣和爱好,又要激发和培养学生新的兴趣和爱好,要要求和鼓励学生投入生活,亲身实践体验。选题要尊重学生的实际、学生的探究本能和兴趣,给与每个学生主体性发挥的广阔空间,从而更好的培养学生提出问题、分析问题、解决问题的素质和能力。使学生成为学习的主人,学有兴趣,习有方法,必有成功。学生的个性在社会活动中得以健康发展,学生的潜能在自学自育中得到充分开发。我们的数学校本课程方案包括两个基本部分:一般项目和基本具体方案。2课程纲要一、课程目标:以贴近生活实际、加强数学应用为宗旨,针对数学这门课的特点,从生活中挖掘数学,提高学生应用数学知识解决有关问题的能力,培养学生的观察,分析能力,充分发挥学生的创造性,开发学生自身的潜能,并且加强对学生的动手操作能力的训练,鼓励学生能够展示自己的研究成功,培养学生的成功心态,使学生的心理得到健康的发展,使每位学生的能力得到充分体现。二、课程概况:本课程由李红杰、孙艳丽、李丽等老师具体负责实施。本课程在初一、初二、初三级部实施。三、课程内容与活动安排:让学生体会数学史可发生在我们的周围,我们的生活空间是无穷的数学世界,在课堂上多设情景,应用数学解决问题,让他们充分发挥自己的创造性,感受到数学的乐趣,在愉快、轻松的学习过程中掌握数学知识,从而培养学生良好的学习习惯,观察事物的能力,形成正确的人生观、价值观。授课对象:初一、初二、初三学生授课时间:星期三课外活动,一课时。授课地点:教室数学校本课程总的内容:3一、目标:以贴近生活实际、加强数学应用为宗旨,针对数学这门课的特点,从生活中挖掘数学,提高学生应用数学知识解决有关问题的能力,培养学生的观察,分析能力,充分发挥学生的创造性,开发学生自身的潜能,并且加强对学生的动手操作能力的训练,鼓励学生能够展示自己的研究成功,培养学生的成功心态,使学生的心理得到健康的发展,使每位学生的能力得到充分体现。一、课程介绍:1、生活中的数学以体会数学与人、自然的关系为切入点,使学生感触学习数学的价值,增强学习数学和应用数学的信心,培养学生动手实践的兴趣;以创设情景形成良性的学习竞争氛围为基础,使学生在一个浓郁的学习气氛中互学互助,每个人都要获得成功,每个人都要进步。2、趣味规律数学数学趣味性和规律性很强,找到一些数学规律,充分发挥学生的创造力,提高学生的逻辑思维能力,掌握数学思想方法,适应时代的需要。按照学生的认识规律,依据启发性和趣味性相结合的原则,增补动手操作,给学生提供更多的动手机会,重视理论联系实际,扩展教材把数学问题放在社会的大背景下启发学生的思考,让学生走进生活,应用于生活,使学生了解数学知识与社会各方面的联系,以便于学生理解所学的指示,培养学生的实践意识,在趣味性的引导下,学4生兴趣盎然,带给学生更多的思索和启发,学生不仅获得数学知识,经过趣味实验,还初步掌握了数学研究的方法,体验到了深究其理和创新实验的乐趣。3、解决问题的策略经历利用特殊情况探索一般规律的过程,经历分情况探讨论的过程,经历将生疏的、繁杂的、未解决的问题转化为熟悉的、简单的、以解决问题的能力,经历用数与形结合的方法解决位的探索过程,经历用整体思想解决问题的探索过程,经历多种策略解决统一问题的探索过程。使学生明确解决一个问题往往可以从不同的角度去考虑,养成善于思考,善于创新,善于用更好地解决问题策略去解决问题的好习惯。5目录勾股定理的证明…………………….6生活中的轴对称…………………21探究活动(设计花坛)…………26镜子改变了什么……………………27频率与概率……………………28几何就在你的身边…………32一个小数点与一场大悲剧………34压岁钱”与“赈灾小银行”……36建议班级购买一台饮水机……38巧用数学看现实………………41怎样烧开水最快最省煤气………44生活中的数学问题………50探讨出租车司机的生意经………54最高的与最矮的……………57表面涂漆的小积木的块数………59抽屉原理和六人集会问题………62怎样列分式方程解应用题……656勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b,所以面积相等.即abcabba214214222,整理得222cba.【证法2】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵RtΔHAE≌RtΔEBF,∴∠AHE=∠BEF.DGCFAHEBabcabcabcabcbabababacbacbacbacbacbacba7∵∠AEH+∠AHE=90º,∴∠AEH+∠BEF=90º.∴∠HEF=180º―90º=90º.∴四边形EFGH是一个边长为c的正方形.它的面积等于c2.∵RtΔGDH≌RtΔHAE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90º,∴∠EHA+∠GHD=90º.又∵∠GHE=90º,∴∠DHA=90º+90º=180º.∴ABCD是一个边长为a+b的正方形,它的面积等于2ba.∴22214cabba.∴222cba.【证法3】(赵爽证明)以a、b为直角边(ba),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab21.把这四个直角三角形拼成如图所示形状.∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90º,bacGDACBFEH8ababccABCDE∴∠EAB+∠HAD=90º,∴ABCD是一个边长为c的正方形,它的面积等于c2.∵EF=FG=GH=HE=b―a,∠HEF=90º.∴EFGH是一个边长为b―a的正方形,它的面积等于2ab.∴22214cabab.∴222cba.【证法4】(1876年美国总统Garfield证明)以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90º,∴∠AED+∠BEC=90º.∴∠DEC=180º―90º=90º.∴ΔDEC是一个等腰直角三角形,它的面积等于221c.又∵∠DAE=90º,∠EBC=90º,∴AD∥BC.9PHGFEDCBAabcabcabcabc∴ABCD是一个直角梯形,它的面积等于221ba.∴222121221cabba.∴222cba.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180º―90º=90º.又∵AB=BE=EG=GA=c,∴ABEG是一个边长为c的正方形.∴∠ABC+∠CBE=90º.∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90º.即∠CBD=90º.又∵∠BDE=90º,∠BCP=90º,BC=BD=a.10cccbacbaABCEFPQMN∴BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则,21222abSbaabSc2122,∴222cba.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(ba),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90º,QP∥BC,∴∠MPC=90º,∵BM⊥PQ,∴∠BMP=90º,∴BCPM是一个矩形,即∠MBC=90º.∵∠QBM+∠MBA=∠QBA=90º,∠ABC+∠MBA=∠MBC=90º,∴∠QBM=∠ABC,又∵∠BMP=90º,∠BCA=90º,BQ=BA=c,11∴RtΔBMQ≌RtΔBCA.同理可证RtΔQNF≌RtΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD.过C作CL⊥DE,交AB于点M,交DE于点L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,∵ΔFAB的面积等于221a,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积=2a.同理可证,矩形MLEB的面积=2b.∵正方形ADEB的面积=矩形ADLM的面积+矩形MLEB的面积∴222bac,即222cba.【证法8】(利用相似三角形性质证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,cbacbaABCDEFGHMLK12斜边AB的长为c,过点C作CD⊥AB,垂足是D.在ΔADC和ΔACB中,∵∠ADC=∠ACB=90º,∠CAD=∠BAC,∴ΔADC∽ΔACB.AD∶AC=AC∶AB,即ABADAC2.同理可证,ΔCDB∽ΔACB,从而有ABBDBC2.∴222ABABDBADBCAC,即222cba.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(ba),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.过A作AF⊥AC,AF交GT于F,AF交DT于R.过B作BP⊥AF,垂足为P.过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵∠BAD=90º,∠PAC=90º,∴∠DAH=∠BAC.又∵∠DHA=90º,∠BCA=90º,AD=AB=c,∴RtΔDHA≌RtΔBCA.∴DH=BC=a,AH=AC=b.由作法可知,PBCA是一个矩形,ABDCacb987654321PQRTHGFEDCBAabcabccc13所以RtΔAPB≌RtΔBCA.即PB=CA=b,AP=a,从而PH=b―a.∵RtΔDGT≌RtΔBCA,RtΔDHA≌RtΔBCA.∴RtΔDGT≌RtΔDHA.∴DH=DG=a,∠GDT=∠HDA.又∵∠DGT=90º,∠DHF=90º,∠GDH=∠GDT+∠TDH=∠HDA+∠TDH=90º,∴DGFH是一个边长为a的正方形.∴GF=FH=a.TF⊥AF,TF=GT―GF=b―a.∴TFPB是一个直角梯形,上底TF=b―a,下底BP=b,高FP=a+(b―a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为543212SSSSSc①∵abaabbSSS21438=abb212,985SSS,∴824321SabbSS=812SSb.②把②代入①,得98812212SSSSbSSc=922SSb
本文标题:数学校本课程
链接地址:https://www.777doc.com/doc-7924526 .html