您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2018-2019学年八年级数学下学期期中模拟试卷(i) 新人教版
1EvaluationWarning:ThedocumentwascreatedwithSpire.Docfor.NET.2019学年八年级数学(下)期中模拟试卷(I)一.选择题(共12小题)1.下列根式中属于最简二次根式的是()A.B.C.D.2.计算:|1﹣|+|3﹣|﹣|3.14﹣π|=()A.0.86﹣2+πB.5.14﹣πC.2﹣7.14+πD.﹣1.14+π3.(3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.24.要使分式有意义,则x的取值范围是()A.x≠1B.x>1C.x>﹣1D.x≠﹣15.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,236.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cmB.2cmC.3cmD.4cm7.(3分)在平面直角坐标系中,菱形OABC的OC边落在x轴上,∠AOC=60°,OA=.若菱形OABC内部(边界及顶点除外)的一格点P(x,y)满足:x2﹣y2=90x﹣90y,就称格点P为“好点”,则菱形OABC内部“好点”的个数为()(注:所谓“格点”,是指在平面直角坐标系中横、纵坐标均为整数的点.)2A.145B.146C.147D.1488.(3分)已知+|b﹣1|=0,那么(a+b)2016的值为()A.﹣1B.1C.32015D.﹣320159.如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A.14B.20C.22D.2810.(3分)下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个11.(3分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开4m后,发现下端刚好接触地面,则旗杆的高为()m.A.7B.7.5C.8D.912.(3分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:3①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二.填空题(共6小题)13.(3分)计算:=.14.(3分)如图,在△ABC中,点D是AB的中点,DE∥BC交AC于点E,若BC=2,则DE的长是.15.(3分)如图,在矩形ABCD中,AB=3,AD=4,P为AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为.16.(3分)如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是cm.417.(3分)如图,四边形ABOC是边长为4的正方形,则A点的坐标是.18.(3分)如图,O为矩形ABCD对角线AC,BD的交点,AB=6,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是.三.解答题(共5小题)19.(8分)计算题(1)﹣(2)×﹣(+)(﹣)20.(8分)如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?521.四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF、AC、DE,当BF⊥AE时,求证:四边形ACED是平行四边形.22.在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.23.如图,在平面直角坐标系中,点A的坐标为(5,0),点B的坐标为(8,4),点C的坐标为(3,4),连接AB、BC、OC(1)求证四边形OABC是菱形;(2)直线l过点C且与y轴平行,将直线l沿x轴正方向平移,平移后的直线交x轴于点P.①当OP:PA=3:2时,求点P的坐标;②点Q在直线1上,在直线l平移过程中,当△COQ是等腰直角三角形时,请直接写出点Q的坐标.67参考答案与试题解析一.选择题(共12小题)1.B;2.B;3.D;4.C;5.B;6.B;7.A;8.B;9.B;10.A;11.B;12.A;二.填空题(共6小题)13.;14.1;15.;16.8;17.(﹣4,﹣4);18.2;三.解答题(共5小题)19.(8分)计算题(1)﹣(2)×﹣(+)(﹣)【解答】解:(1)原式=3﹣2=;(2)原式=﹣(5﹣3)=3﹣2=1.20.【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:8∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.21.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AE平分∠BAD,∴∠EAB=∠EAD=∠AEB,∴AB=BE,∴BE=CD.(2)∵BA=BE,BF⊥AE,∴AF=EF,∵AD∥CE,∴∠DAF=∠CEF,在△ADF和△ECF中,,∴△DAF≌△CEF∴AD=CE,∵AD∥CE,∴四边形ADEC是平行四边形.22.【解答】解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠BAD=90°,9∵∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=2,∴BD=2BO=4,在Rt△BAD中,AD=.23.【解答】证明:(1)∵点A的坐标为(5,0),点B的坐标为(8,4),点C的坐标为(3,4),O点坐标(0,0)∴AO=BC=5,CO==5,AB==5∴AO=BC=CO=AB=5∴四边形ABCO是菱形(2)①当点P在线段OA上,∵OP:PA=3:2,OP+AP=5∴OP=3,PA=2∴点P坐标为(3,0)当点P在点A的右侧,∵OP:PA=3:2,OP﹣AP=OA=5∴OP=15,AP=10∴点P坐标为(15,0)②如图,当∠COQ=90°,OC=OQ时,过点C作CE⊥OA于E,则OE=3,CE=4,∵∠COE+∠POQ=90°,∠COE+∠OCE=90°,∴∠OCE=∠POQ,且OC=OQ,∠CEO=∠OPQ10∴△COE≌△OQP(AAS)∴PQ=OE=3,OP=CE=4,∴点Q坐标(﹣4,3)如图,当∠OCQ=90°,OC=CQ时,过点C作CE⊥OA于点E,则CE=4,OE=3,过点Q作FQ⊥CE于点F,∵∠OCE+∠ECQ=90°,∠ECQ+∠CQF=90°,∴∠OCE=∠CQF,且OC=CQ,∠OEC=∠CFQ=90°,∴△OEC≌△CFQ(AAS)∴CF=OE=3,FQ=CE=4,∴EF=1,∵QF⊥CE,CE⊥AO,PQ⊥OA∴四边形EPQF是矩形∴EP=FQ=4即OP=7∴点Q坐标为(7,1)如图,若∠CQO=90°,CQ=OQ时,过点C作CE⊥OA于点E,则CE=4,OE=3,∵∠CQH+∠OQP=90°,∠PQO+∠QOP=90°,∴∠CQH=∠QOP,且OQ=CQ,∠CHQ=∠OPQ=90°,∴△OPQ≌△QHC(AAS)∴OP=HQ,CH=PQ,∵CE⊥OA,PH⊥BC,PH⊥OA∴四边形CEPH是矩形,∴EP=CH=PQ,HP=CE=4,∵HQ+PQ=HP=4=OP+EP,OP﹣EP=OE=3,∴OP=,EP=PQ=11∴点Q坐标(,)综上所述:点Q坐标为:(﹣4,3),(7,1),(,)
本文标题:2018-2019学年八年级数学下学期期中模拟试卷(i) 新人教版
链接地址:https://www.777doc.com/doc-7935003 .html