您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 计算机算法设计与分析【王晓东-电子工业出版社-2版】-第4章
上海金融学院信息管理系1第4章贪心算法上海金融学院信息管理系2贪婪,我找不到更好的词来描述,它就是好,它就是对,它就是高效。——美国电影《华尔街》中的台词上海金融学院信息管理系3我们看一个找硬币的例子。假设有四种硬币,它们的面值分别为:2角5分,1角,5分,1分。现在要找给顾客6角3分。怎样找使得给顾客的硬币最少。我们下意识地使用了这样的找硬币算法:首先选出一个不超过6角3分的最大硬币,然后,从6角3分中减去,再在剩余的值中选出一个不超过该值的最大硬币,如此反复,直到找够为止。这个找硬币的算法就是贪心选择算法。如果上述问题改为:要找给顾客1角5分,硬币的面值分别为:1角1分,5分和1分。这时用贪心算法,给顾客找的情况是:一个1角1分和四个1分。而找三个5分为最优找法。故贪心算法不是对所有问题都能得到整体最优解。上海金融学院信息管理系4学习要点理解贪心算法的概念。掌握贪心算法的基本要素(1)最优子结构性质(2)贪心选择性质理解贪心算法与动态规划算法的差异理解贪心算法的一般理论通过应用范例学习贪心设计策略。(1)活动安排问题;(2)最优装载问题;(3)哈夫曼编码;(4)单源最短路径;(5)最小生成树;(6)多机调度问题。上海金融学院信息管理系5adcbe1514812131067119上海金融学院信息管理系6adcbe1514812131067119ac10e7d8b6a1344上海金融学院信息管理系7adcbe1514812131067119ec7a10d11b6e943上海金融学院信息管理系8adcbe1514812131067119ec7a10d11b6e943a上海金融学院信息管理系9顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。上海金融学院信息管理系104.1活动安排问题活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子。该问题要求高效地安排一系列争用某一公共资源的活动。贪心算法提供了一个简单、漂亮的方法使得尽可能多的活动能兼容地使用公共资源。上海金融学院信息管理系114.1活动安排问题设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且sifi。如果选择了活动i,则它在半开时间区间[si,fi)内占用资源。若区间[si,fi)与区间[sj,fj)不相交,则称活动i与活动j是相容的。也就是说,当si≥fj或sj≥fi时,活动i与活动j相容。上海金融学院信息管理系124.1活动安排问题templateclassTypevoidGreedySelector(intn,Types[],Typef[],boolA[]){A[1]=true;intj=1;for(inti=2;i=n;i++){if(s[i]=f[j]){A[i]=true;j=i;}elseA[i]=false;}}下面给出解活动安排问题的贪心算法GreedySelector:各活动的起始时间和结束时间存储于数组s和f中且按结束时间的非减序排列上海金融学院信息管理系134.1活动安排问题由于输入的活动以其完成时间的非减序排列,所以算法greedySelector每次总是选择具有最早完成时间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。算法greedySelector的效率极高。当输入的活动已按结束时间的非减序排列,算法只需O(n)的时间安排n个活动,使最多的活动能相容地使用公共资源。如果所给出的活动未按非减序排列,可以用O(nlogn)的时间重排。上海金融学院信息管理系144.1活动安排问题例:设待安排的11个活动的开始时间和结束时间按结束时间的非减序排列如下:i1234567891011S[i]130535688212f[i]4567891011121314上海金融学院信息管理系154.1活动安排问题算法greedySelector的计算过程如左图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。上海金融学院信息管理系164.1活动安排问题若被检查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。贪心算法并不总能求得问题的整体最优解。但对于活动安排问题,贪心算法greedySelector却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个结论可以用数学归纳法证明。上海金融学院信息管理系174.2贪心算法的基本要素本节着重讨论可以用贪心算法求解的问题的一般特征。对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质:贪心选择性质和最优子结构性质。上海金融学院信息管理系184.2贪心算法的基本要素1、贪心选择性质所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。上海金融学院信息管理系194.2贪心算法的基本要素当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。2、最优子结构性质上海金融学院信息管理系204.2贪心算法的基本要素贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。但是,对于具有最优子结构的问题应该选用贪心算法还是动态规划算法求解?是否能用动态规划算法求解的问题也能用贪心算法求解?下面研究2个经典的组合优化问题,并以此说明贪心算法与动态规划算法的主要差别。3、贪心算法与动态规划算法的差异上海金融学院信息管理系214.2贪心算法的基本要素0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。上海金融学院信息管理系224.2贪心算法的基本要素背包问题:与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1≤i≤n。这2类问题都具有最优子结构性质,极为相似,但背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解。上海金融学院信息管理系234.2贪心算法的基本要素首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略一直地进行下去,直到背包装满为止。具体算法可描述如下页:用贪心算法解背包问题的基本步骤:上海金融学院信息管理系244.2贪心算法的基本要素voidKnapsack(intn,floatM,floatv[],floatw[],floatx[]){Sort(n,v,w);inti;for(i=1;i=n;i++)x[i]=0;floatc=M;for(i=1;i=n;i++){if(w[i]c)break;x[i]=1;c-=w[i];}if(i=n)x[i]=c/w[i];}算法knapsack的主要计算时间在于将各种物品依其单位重量的价值从大到小排序。因此,算法的计算时间上界为O(nlogn)。为了证明算法的正确性,还必须证明背包问题具有贪心选择性质。上海金融学院信息管理系254.2贪心算法的基本要素对于0-1背包问题,贪心选择之所以不能得到最优解是因为在这种情况下,它无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。事实上,在考虑0-1背包问题时,应比较选择该物品和不选择该物品所导致的最终方案,然后再作出最好选择。由此就导出许多互相重叠的子问题。这正是该问题可用动态规划算法求解的另一重要特征。实际上也是如此,动态规划算法的确可以有效地解0-1背包问题。上海金融学院信息管理系264.3最优装载有一批集装箱要装上一艘载重量为c的轮船。其中集装箱i的重量为Wi。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。1、算法描述最优装载问题可用贪心算法求解。采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解。具体算法描述如下页。上海金融学院信息管理系274.3最优装载templateclassTypevoidLoading(intx[],Typew[],Typec,intn){int*t=newint[n+1];Sort(w,t,n);for(inti=1;i=n;i++)x[i]=0;for(inti=1;i=n&&w[t[i]]=c;i++){x[t[i]]=1;c-=w[t[i]];}}上海金融学院信息管理系284.3最优装载2、贪心选择性质可以证明最优装载问题具有贪心选择性质。3、最优子结构性质最优装载问题具有最优子结构性质。由最优装载问题的贪心选择性质和最优子结构性质,容易证明算法loading的正确性。算法loading的主要计算量在于将集装箱依其重量从小到大排序,故算法所需的计算时间为O(nlogn)。上海金融学院信息管理系294.4哈夫曼编码哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。给出现频率高的字符较短的编码,出现频率较低的字符以较长的编码,可以大大缩短总码长。1、前缀码对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其它字符代码的前缀。这种编码称为前缀码。上海金融学院信息管理系304.4哈夫曼编码编码的前缀性质可以使译码方法非常简单。表示最优前缀码的二叉树总是一棵完全二叉树,即树中任一结点都有2个儿子结点。平均码长定义为:使平均码长达到最小的前缀码编码方案称为给定编码字符集C的最优前缀码。)()()(cdcfTBTCc上海金融学院信息管理系314.4哈夫曼编码2、构造哈夫曼编码哈夫曼提出构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼编码。哈夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。算法以|C|个叶结点开始,执行|C|-1次的“合并”运算后产生最终所要求的树T。上海金融学院信息管理系324.4哈夫曼编码在书上给出的算法huffmanTree中,编码字符集中每一字符c的频率是f(c)。以f为键值的优先队列Q用在贪心选择时有效地确定算法当前要合并的2棵具有最小频率的树。一旦2棵具有最小频率的树合并后,产生一棵新的树,其频率为合并的2棵树的频率之和,并将新树插入优先队列Q。经过n-1次的合并后,优先队列中只
本文标题:计算机算法设计与分析【王晓东-电子工业出版社-2版】-第4章
链接地址:https://www.777doc.com/doc-79430 .html