您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 加法交换律和结合律教学设计-详案
1《加法交换律和加法结合律》教学设计教学内容:苏教版小学数学四年级下册教学目标:1、让学生在经历探索加法交换律和结合律的过程中,理解并掌握加法交换律和结合律,初步感受到应用加法交换律和结合律可以使一些计算简便,发展应用意识。2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。3、让学生在学习过程中,感受到数的运算与日常生活的密切联系。获得探究的乐趣和成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。教学重点:经历运算律的探索过程,发现规律,概括规律教学准备:学生活动场景图教学流程:一、创设情境,提出问题。1、课前谈话。师:我们来玩一个语言游戏好吗?老师说一个词,你们把它倒过来说一遍,比如,我说“喜欢”你们就说“欢喜”,会说吗?好,现在开始:“你们”(生:们你)啊?什么意思?想“蒙”老师呀?那可不行。开个玩笑,不过学习可千万不能蒙人,对吧?好,接着来,声音响亮些!“好听”(生:听好);“好说”(生:说好);“好学”(生:学好)。师:好!这可都是你们自己说的哦!“听好!说好!学好!”老师希望大家在这节课的学习中都能做到这三点。2、提出问题。谈话:再过一两周,我们学校就要举行一年一度的校运会了,最近,同学们锻炼的热情可高了,我们一起去体育活动场看看吧!体育活动场上有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子。提问:根据老师给你们的这些信息,你能提出什么数学问题呢?估计学生提出的问题可能有以下几种,师根据学生的回答板书:(1)跳绳的有多少人?(2)女生有多少人?2(3)跳绳的比踢毽子的多几人?(4)参加活动的一共有多少人?(5)跳绳的男生比跳绳的女生多多少人?……师:同学们提出了这么多的问题,今天这节课我们就重点来解决“跳绳的有多少人?”“女生有多少人?”和“参加活动的一共有多少人?”这三个问题。二、探究规律,形成方法。1、探究加法交换律,形成方法。(1)引导观察,发现问题。提问:谁能解决“跳绳的有多少人?”这个问题?怎样列式计算?生1:28+17=45(人)师:还有不同的列式吗?生2:17+28=45(人)师:对了,这两道算式都可以算出跳绳的人数一共是45人。也就是说这两道算式的得数是相同的,它们之间是相等的。那么这两个式子我们可以用什么符号连接起来?生:等号师:回答得非常正确,它们之间可以用等号连接起来。刚才有同学提出“女生有多少人”的问题?我们该怎么解决呢?生1:17+23=40(人)生2:23+17=40(人)师:对了,这两个式子都可以算出女生一共有40人,这两道算式的得数也是相同,我们也可以用“=”把这两个式子连接起来。师:通过刚才同学们的积极思考计算,我们算出了:跳绳的一共有多少人和女生一共有多少人?用了这两个算式(17+28=28+17,17+23=23+17)分别来表达,算式的结果也是相等的。师:仔细观察比较这两组算式,你发现了什么?什么变了,什么没变?生:两个加数的位置变换了,和不变。师:大家同意他的说法吗?都同意,对了,两个加数的位置变换了,但结果不变。(2)枚举归纳,积累感知。师:是不是其他的式子也有这样的规律?像这样的式子你还可以举一些例子吗?可以,那现在请你写出几个这样的式子,同桌相互验证一下吧。3(3)合作交流,概括规律。师:好了,有哪位同学愿意跟大家分享一下你列出的式子呢?生:52+28=28+52师:你是怎样验证的?师:哦!你先列出一个式子算出得数,然后把两个加数的位置交换了,再列一个式子,再计算出得数,结果发现两个式子的得数是一样的。因此,你用等号把这两个式子连接起来。大家同意他的做法吗?都同意,同学们都做得不错。老师还有一个问题想问大家。提问:像具有这样特征的式子你还能写几个呢?好,现在拿出你们的练习本,给你们30秒钟,看谁写得多!师:好了,时间到。刚才老师下去看了看,发现有些同学写得很快,一下子就列出了很多个式子,老师想请一个写得比较多的同学来谈谈:你为什么能写得这么快这么多?在写的过程中你发现了什么规律?生:两个数相加,交换加数的位置,和不变。师:大家同意他的说法吗?都同意,嗯,对了,在这里我们发现任意两个数相加,交换加数的位置,它们的和不变。(4)个性创造,构建模型。问:像具有这样特征的式子我们能写得完吗?生:写不完。师:写不完那怎么办呢?能不能想个办法把这些式子全表示出来?请同学们独立思考,然后把你的想法在小组内交流一下。师:哪个小组想说说你们的想法?好请你们组。组1:你们组用▲和■代表两个加数,▲+■=■+▲组2:你们组用文字来表示,也就是甲数+乙数=乙数+甲数组3:第三组用的是字母a和b表示两个加数,表示的式子为a+b=b+a师:刚才大家想出的等式都很好,不仅能把我们发现的规律表示出来,而且比语言叙述更简洁。其实这个规律,是加法的一个很重要的运算律。(板书:运算律)能给它取个名字吗?——加法交换律。在数学上,我们通常用字母a和b来表示两个加数,这里的a可以代表17,b可以代表28,还可以代表很多很多的数,那么,加法交换律可以表示为:4a+b=b+a。这就是我们今天认识的第一个定律:两个数相加,交换加数的位置,和不变,这就是加法交换律。(5)联系旧知,简单应用。师:这个规律其实是我们的老朋友了,你们记得以前在什么地方见过它吗?小练习:下面请同学们用竖式计算并验算一道算式186+375=老师想请一个同学上讲台来演算一遍。提问:刚才验算时,应用到了什么规律?师:对了,在加法竖式验算时,我们常常交换两个加数的位置来进行验算,利用的是什么呢?其实就是运用了加法交换律。(6)学法指导,促进迁移。刚才我们是怎样研究加法交换律的呢?(板书:发现问题→举例验证→语言概括→字母表示。)下面我们就用这种研究方法来研究加法中另一个重要规律。2、学法迁移,探索加法结合律。(1)发现问题。师:刚才有同学提出一个问题,参加活动的一共有多少人?怎样解决这个问题?学生列式,教师指名回答后板书:(28+17)+2328+(17+23)第一个同学先算出跳绳的有多少人,再加上踢毽子的人数。第二个同学先求出女生一共有多少人,再和男生人数相加,得到活动的总人数。请同学们猜一猜:这两个式子相等吗?怎样证明?(2)解决问题生:相等,分别算出这两个式子的得数,发现结果是一样的!师:对,这两道算式的结果是一样的,都能算出参加活动的人数一共是68人。同样的,我们也可以用等号把这两道算式连接起来。师:仔细观察,比较这两个算式,你发现了什么?什么变了?什么没变?生:三个加数完全相同,加数的位置没有变化,只是运算顺序发生改变了。师:像这样的式子得到的结果就一定是一样的吗?我们先来看下面两组算式,算一算能否在○里填上“=”,想一想这两组算式是否也有这样的特点呢?(45+25)+13○45+(25+13)(36+18)+22○36+(18+22)5师:我们一起来看这两道式子,第一道题,三个加数是一样的,左边的式子是前两个加数相加再加上第三个加上,右边的式子是后两个加数相加再加上第一个加数,你们口算一下。左边45+25=70,再加上13=83,右边25+13=38,再加上45=83。两道算式完全相等。下一道题,对,也是完全相等的。再联系刚才咱们认识的式子,也是相等的,具有这样规律的式子你还能列出多少条式子呢?那可太多了,那你能用什么简单的方式把具有这样规律的式子表达出来呢?(3)师引导小结:加法结合律用字母表示就是“(a+b)+c=a+(b+c).师:有同学想到,用简洁的字母来表示,用abc分别来表示3个加数,第一个式子是(a+b)+c,第二个式子是a+(b+c),它们的和不变。师:大家说同意她的做法吗?都同意,对了,三个数相加,可以先把前两个数相加,再与第三个数相加;也可以先把后两个数相加,再与第一个数相加,它们的和不变。师:这个规律就是我们今天要认识的另一个运算律——加法结合律。(板书:加法结合律)三、巩固内化,拓展应用。1、完成P58页“想想做做”第1题。2、下面的式子各应用了什么规律?96+35=35+96(45+36)+64=45+(36+64)560+(140+70)=(560+140)+70(75+48)+25=(75+25)+283、你能在括号里填上合适的数吗?95+35=35+()205+38=()+205(45+36)+64=45+(+)360+(40+170)=(360+)+()四、全课总结,评价反思。今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么,课前同学们提出的剩下的这几个问题,你能解决吗?(第3、5两个问题用减法解答)那么在减法中,有没有这样的规律呢?课后大家可以继续研究。
本文标题:加法交换律和结合律教学设计-详案
链接地址:https://www.777doc.com/doc-7980363 .html