您好,欢迎访问三七文档
7.2.3二元一次方程组的应用知识技能目标1.会找出简单问题中的相等关系,从而列出二元一次方程组解简单的实际问题;2.培养学生用数学知识来解决实际问题的能力.过程性目标1.让学生在掌握了二元一次方程组的解法后,再次体验二元一次方程组与现实生活的联系和作用.2.有的实际问题既可以用列一元一次方程也可以列二元一次方程组解,让学生从中体会它们之间的联系和区别.教学过程一、创设情境小军买了80分与2元的邮票共16枚,花了18元8角.你知道小军80分与2元的邮票各买了多少枚?这是一个大家熟悉的购物问题,你会用所学到的知识来解决吗(学生讨论)?解设80分的邮票买了x枚,则2元的邮票买了(16-x)枚根据题意得0.8x+2(16-x)=18.8解这个方程得x=1116-x=5.答小军买了80分的邮票11枚,买了2元的邮票5枚.那如果设小军买了80分的邮票x枚,2元的邮票y枚呢,如何来解呢?二、探索归纳引导学生发现两种面值的邮票的数量与数量之间、总价与总价之间的相等关系.考虑它们有什么样的相等关系呢?在上述问题中数量与数量之间的相等关系:x+y=16总价与总价之间的相等关系:0.8x+2y=18.8根据题意从而列出方程组,8.1828.016yxyx511yx解这个方程组得答小军买了80分的邮票11枚,买了2元的邮票5枚.我们可以发现在实际问题中,都存在着一些等量关系,因此我们可借助列方程或方程组的方法来处理这些问题.三、巩固应用例某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工6吨或者粗加工16吨.现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?分析问题的关键是先解答前一半问题,即先求出安排精加工和粗加工的天数.我们不妨用列方程组的方法来解答.抓住“计划用15天完成加工任务”和“收购到某种蔬菜共140吨”这两个数量关系建立二元一次方程组.解设应安排x天精加工,y天粗加工,14016615yxyx根据题意得,510yx解这个方程组得.出售这些加工后的蔬菜一共可获利,2000×6×10+10×16×5=200000元答应安排10天精加工,5天粗加工,加工后出售共可获利200000元.处理这些实际问题的过程可以进一步概括为:练习1.22名工人按定额完成了1400件产品,其中三级工每人定额200件,二级工每人定额50件.若这22名工人中只有二级工与三级工.问二级工与三级工各有多少名?2.为改善富春河的周围环境,县政府决定,将该河上游A地的一部分牧场改为林场,预计林场和牧场共有162公顷,牧场面积是林场面积的20%.请你算一算,完成后林场、牧场的面积各为多少公顷?四、交流反思列二元一次方程组和列一元一次方程解同一个实际问题,是用两种不同的表达形式揭示了问题中的相等关系;反过来,求解实际问题的实质是把问题中的相等关系翻译成数学表达式,从而把实际问题转化为数学问题.学习各类实际问题,不仅要熟悉各类问题的基本数量关系,而且还要弄清各类问题之间的本质联系.五、检测反馈1.某船的载重为260吨,容积为1000立方米.现有甲、乙两种货物要运,其中甲种货物每吨体积为8立方米,乙种货物每吨体积为2立方米,若要充分利用这艘船的载重与容积,甲、乙两种货物应各装多少吨(设装运货物时无任何空隙)?2.第一小组的同学分铅笔若干枝.若其中有4人每人各取4枝,其余的人每人取3枝,则还剩16枝;若有1人只取2枝,则其余的人恰好每人各可得6枝,问同学有多少人?铅笔有多少枝?3.有一批机器零件共418个,若甲先做2天,乙再加入合作,则再做2天可超产2个;若乙先做3天,然后两人再共做2天,则还有8个未完成.问甲、乙两人每天各做多少个零件?4.某厂第二车间的人数比第一车间的人数的54少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的43.问这两个车间各有多少人?
本文标题:七年级数学下册 第7章 一次方程组 7.2 二元一次方程组的解法 7.2.3 二元一次方程组的应用教
链接地址:https://www.777doc.com/doc-8017914 .html