您好,欢迎访问三七文档
4.4平行线的判定一.选择题(共7小题)1.如图所示,下列条件能判断a∥b的有()(第1题图)A.∠1+∠2=180°B.∠2=∠4C.∠2+∠3=180°D.∠1=∠32.如图,下面推理中,正确的是()(第2题图)A.∵∠A=∠D,∴AB∥CDB.∵∠A=∠B,∴AD∥BCC.∵∠A+∠D=180°,∴AB∥CDD.∵∠B+∠C=180°,∴AD∥BC3.如图,已知∠1=∠2,∠3=71°,则∠4的度数是()(第3题图)A.19°B.71°C.109°D.119°4.如图,结合图形作出了如下判断或推理:(第4题图)①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;②如图乙,如果AB∥CD,那么∠B=∠D;③如图丙,如果∠ACD=∠CAB,那么AD∥BC;④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是()个.A.1B.2C.3D.45.如图,直线a,b被直线c所截,∠1=62°,∠3=80°,现逆时针转动直线a至a′位置,使a′∥b,则∠2的度数是()(第5题图)A.8°B.10°C.18°D.28°6.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()(第6题图)A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C7.小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,小明说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”小刚说:“∠AGD一定大于∠BFE.”小颖说:“如果连接GF,则GF一定平行于AB.”他们四人中,有()个人的说法是正确的.(第7题图)A.1B.2C.3D.4二.填空题(共4小题)8.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是.(第8题图)9.如图,根据图形填空(1)∵∠A=(已知)∴AC∥DE()(2)∵∠2=(已知)∴DF∥AB()(3)∵∠2+∠6=180°(已知)∴∥()(4)∵AB∥DF(已知)∴∠A+∠=180°().(第9题图)10.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确的是(只填序号)(第10题图)11.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变△ACD的位置(其中A点位置始终不变),使三角形ACD的一边与三角形AOB的某一边平行时,写出∠BAD的所有可能的值.(第11题图)三.解答题(共5小题)12.完成下面的证明:已知:如图.BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1().∵BE平分∠ABD(已知),∴∠ABD=(角的平分线的性质).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)().∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=().∴AB∥CD().(第12题图)13.如图①是大众汽车的图标,图②是该图标轴抽象的几何图形,且AE∥BF,∠A=∠B,试猜想AC与BD的位置关系,并说明理由.(第13题图)14.如图1为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F顺次首尾连结,若AF恰好经过点G,且AF∥DE,∠B=∠C+10°,∠D=∠E=105°.(第14题图)(1)求∠F的度数.(2)计算∠B﹣∠CGF的度数是.(直接写出结果)(3)连结AD,∠ADE与∠CGF满足怎样数量关系时,BC∥AD,并说明理由.15.如图1,将一条两边沿互相平行的纸带折叠(AM∥BN,AD∥BC),AB为折痕,AD交BN于点E.(1)试说明∠MAD=∠NBC的理由;(2)设∠MAD的度数为x,试用含x的代数式表示∠ABE的度数;(3)如若按图2形式折叠.试问(2)中的关系式是否仍然成立?请说明理由.若∠ABE的度数是∠MAD的两倍,求此时∠MEC的度数.(第15题图)16.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=50°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.(第16题图)参考答案一.1.B2.C3.C4.B5.C6.C7.B二.8.内错角相等,两直线平行9.(1)∠4;同位角相等,两直线平行;(2)∠4;内错角相等,两直线平行;(3)AB,DF,同旁内角互补,两直线平行;(4)7;两直线平行,同旁内角互补10.①④11.15°,30°,45°,75°,105°,135°,150°,165°.三.12.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1(角平分线的性质).∵BE平分∠ABD(已知),∴∠ABD=2∠2(角的平分线的性质).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).13.解:AC∥BD,理由:∵AE∥BF,∴∠B=∠DOE.∵∠A=∠B,∴∠DOE=∠A,∴AC∥BD.14.解:(1)∵AF∥DE,∴∠F+∠E=180°,∴∠F=180°﹣105°=75°;(2)如答图,延长DC交AF于点K.(第14题答图)可得:∠B﹣∠CGF=∠C+10°﹣∠CGF=∠GKC+10°=∠D+10°=115°.(3)当∠ADE+∠CGF=180°时,BC∥AD,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.15.解:(1)∵AM∥BN,AD∥BC,∴∠MAD=∠NED,∠NED=∠NBC,∴∠MAD=∠NBC;(2)如答图1,∵AM∥BN,∴∠ABE=∠BAF,MAD=∠BEA=x,由折叠可得,∠FAB=∠BAE,∴∠ABE=∠BAE,即△ABE是等腰三角形,又∵∠BEA=x,∴∠ABE=;(3)第(2)问中的关系式成立,理由:如答图2,∵AM∥BN,∴∠ABF=∠BAE,MAD=∠BEA=x,由折叠可得,∠FBA=∠ABE,∴∠ABE=∠BAE,即△ABE是等腰三角形,又∵∠BEA=x,∴∠ABE=;∵∠ABE的度数是∠MAD的两倍,∴∠ABE=2x,又∵∠ABE=,∴2x=,解得x=36°,∴∠MAD=36°,∵AD∥BC,∴∠MEC=∠MAD=36°.(第15题答图)16.解:(1)∵EM平分∠AEF∴∠AEF=∠FME,又∵∠FEM=∠FME,∴∠AEF=∠FEM,∴AB∥CD;(2)①如答图2,∵AB∥CD,β=50°∴∠AEG=130°,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=65°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣65°=25°,即α=25°;②分两种情况讨论:如答图2,当点G在点F的右侧时,α=.证明:∵AB∥CD,∴∠AEG=180°﹣β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=(180°﹣β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(180°﹣β)=,即α=;如答图3,当点G在点F的左侧时,α=90°﹣.证明:∵AB∥CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠MEF﹣∠HEF=(∠AEF﹣∠FEG)=∠AEG=β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH,即α=90°﹣.(第16题答图)
本文标题:七年级数学下册 第4章 相交线与平行线 4.4 平行线的判定作业设计 (新版)湘教版
链接地址:https://www.777doc.com/doc-8018170 .html